Empirical Model of Equatorial ElectroJet (EEJ) Using Long‐Term Observations From the Indian Sector

Space Weather Pub Date : 2024-07-01 DOI:10.1029/2024sw003988
S. Tulasi Ram, M. Ankita, B. Nilam, S. Gurubaran, Manoj Nair, Gopi K Seemala, P. S. Brahmanandam, A. Dimri
{"title":"Empirical Model of Equatorial ElectroJet (EEJ) Using Long‐Term Observations From the Indian Sector","authors":"S. Tulasi Ram, M. Ankita, B. Nilam, S. Gurubaran, Manoj Nair, Gopi K Seemala, P. S. Brahmanandam, A. Dimri","doi":"10.1029/2024sw003988","DOIUrl":null,"url":null,"abstract":"The Equatorial Electrojet (EEJ) is one of the important near‐earth space weather phenomena which exhibits significant diurnal, seasonal and solar activity variations. This paper investigates the EEJ variations at diurnal, seasonal and solar cycle time scales from the Indian sector and portrays a new empirical EEJ field model developed using the observations spanning over nearly two solar cycles. The Method of Naturally Orthogonal Components (MNOC), also known as Principal Component Analysis (PCA), was employed to extract the dominant patterns of principal diurnal, semi‐diurnal, and ter‐diurnal components contributing to the EEJ variation. The amplitudes of these diurnal, semi‐diurnal, and ter‐diurnal components in EEJ are found to vary significantly with the season and solar activity. The seasonal and solar activity dependencies of these principal components are modeled using suitable bimodal distribution functions. Finally, the empirical model for EEJ field was built by combining the principal components with their corresponding modeled amplitudes. This model accurately reproduces the diurnal, seasonal and solar activity variations of EEJ. The modeled monthly mean variations of EEJ field at ground exhibit excellent correlation of 0.96 with the observations with the root mean square error <5 nT. It also successfully captures the seasonal and solar activity variations of Counter Electrojet (CEJ). Finally, this model named “Indian Equatorial Electrojet (IEEJ) Model” is made publicly available for interested scientific users (https://iigm.res.in/system/files/IEEJ_model.html).","PeriodicalId":510519,"journal":{"name":"Space Weather","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2024sw003988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Equatorial Electrojet (EEJ) is one of the important near‐earth space weather phenomena which exhibits significant diurnal, seasonal and solar activity variations. This paper investigates the EEJ variations at diurnal, seasonal and solar cycle time scales from the Indian sector and portrays a new empirical EEJ field model developed using the observations spanning over nearly two solar cycles. The Method of Naturally Orthogonal Components (MNOC), also known as Principal Component Analysis (PCA), was employed to extract the dominant patterns of principal diurnal, semi‐diurnal, and ter‐diurnal components contributing to the EEJ variation. The amplitudes of these diurnal, semi‐diurnal, and ter‐diurnal components in EEJ are found to vary significantly with the season and solar activity. The seasonal and solar activity dependencies of these principal components are modeled using suitable bimodal distribution functions. Finally, the empirical model for EEJ field was built by combining the principal components with their corresponding modeled amplitudes. This model accurately reproduces the diurnal, seasonal and solar activity variations of EEJ. The modeled monthly mean variations of EEJ field at ground exhibit excellent correlation of 0.96 with the observations with the root mean square error <5 nT. It also successfully captures the seasonal and solar activity variations of Counter Electrojet (CEJ). Finally, this model named “Indian Equatorial Electrojet (IEEJ) Model” is made publicly available for interested scientific users (https://iigm.res.in/system/files/IEEJ_model.html).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用印度扇区的长期观测数据建立赤道电射流(EEJ)的经验模型
赤道电射流(EEJ)是重要的近地空间天气现象之一,表现出明显的昼夜、季节和太阳活动变化。本文研究了印度扇区在昼夜、季节和太阳周期时间尺度上的 EEJ 变化,并描绘了利用跨越近两个太阳周期的观测数据开发的新的经验 EEJ 场模型。采用自然正交分量法(MNOC),也称为主分量分析法(PCA),提取了造成 EEJ 变化的昼夜、半昼夜和三昼夜主分量的主要模式。研究发现,EEJ 中这些昼夜、半昼夜和三昼夜成分的振幅随季节和太阳活动的变化而显著不同。这些主分量的季节和太阳活动依赖性使用合适的双峰分布函数进行建模。最后,通过将主分量与其相应的建模振幅相结合,建立了 EEJ 场的经验模型。该模型准确地再现了 EEJ 的昼夜、季节和太阳活动变化。地面 EEJ 场月平均变化模型与观测数据的相关性达到 0.96,均方根误差小于 5 nT。它还成功捕捉到了逆电射流(CEJ)的季节和太阳活动变化。最后,该模型被命名为 "印度赤道电射流(IEEJ)模型",供感兴趣的科学用户公开使用(https://iigm.res.in/system/files/IEEJ_model.html)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inner Radiation Belt Simulations During the Successive Geomagnetic Storm Event of February 2022 Modeling GIC in the Southern South Island of Aotearoa New Zealand Using Magnetotelluric Data MAOOA‐Residual‐Attention‐BiConvLSTM: An Automated Deep Learning Framework for Global TEC Map Prediction Enhanced Sporadic E Layer and Its Perturbations During the 2022 Hunga Volcanic Eruption Updating Measures of CME Arrival Time Errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1