Lin Li , Qinlong Wen , Ting Wang , Sutong Xiao , Yang Gao , Mao Wang , Xiaohui Xu , Lang Ma , Chong Cheng
{"title":"Metal-organic frameworks-engineered reactive-oxygen catalytic materials: Enzyme-mimicking coordinations, structure evolutions, and biotherapeutic applications","authors":"Lin Li , Qinlong Wen , Ting Wang , Sutong Xiao , Yang Gao , Mao Wang , Xiaohui Xu , Lang Ma , Chong Cheng","doi":"10.1016/j.mattod.2024.06.017","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Metal-organic frameworks (MOFs)-engineered reactive-oxygen catalytic materials (ROCMs) have offered essential contributions to boosting the biocatalytic efficiency in diverse biomedical applications. While since the varied coordination environments, abundant node-ligand pairs, and multiple or complex atom sites, precisely overviewing the mechanisms and revealing the structure–reactivity relationships of MOFs-engineered ROCMs still confront great challenges, which is essential to direct the future design and applications of ROCMs. Here, we provide a comprehensive summarization of the latest progress and future trends in MOFs-engineered ROCMs with enzyme-mimicking structures for ROS regulation and biotherapeutic applications. First, the catalytic behaviors and fundamental mechanisms of MOFs-engineered ROCMs on regulating ROS levels are outlined. Then, the enzyme-mimicking coordination environments and structure evolutions of MOFs-engineered ROCMs are discussed thoroughly, including coordination modulation, hybrid structures, </span>carbon nanostructures, and single-atom materials. Particularly, we offer unique insights into </span>enzyme<span> structure mimicking, microenvironment modulation, structure evolutions, and theoretical understanding for revealing mechanisms. Thereafter, the representative biotherapeutic applications have been summarized with a unique focus on structural property-reactivity relationships. Finally, we systematically highlight the current challenges and future perspectives. Overall, this is a timely review that focuses on creating MOF structures for reactive-oxygen biocatalysis from structure-activity relationships to biological properties. We envision this cutting review will substantially stimulate the development and widespread utilization of MOFs-engineered ROCMs in biomedical applications.</span></p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"78 ","pages":"Pages 142-180"},"PeriodicalIF":21.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001263","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-organic frameworks (MOFs)-engineered reactive-oxygen catalytic materials (ROCMs) have offered essential contributions to boosting the biocatalytic efficiency in diverse biomedical applications. While since the varied coordination environments, abundant node-ligand pairs, and multiple or complex atom sites, precisely overviewing the mechanisms and revealing the structure–reactivity relationships of MOFs-engineered ROCMs still confront great challenges, which is essential to direct the future design and applications of ROCMs. Here, we provide a comprehensive summarization of the latest progress and future trends in MOFs-engineered ROCMs with enzyme-mimicking structures for ROS regulation and biotherapeutic applications. First, the catalytic behaviors and fundamental mechanisms of MOFs-engineered ROCMs on regulating ROS levels are outlined. Then, the enzyme-mimicking coordination environments and structure evolutions of MOFs-engineered ROCMs are discussed thoroughly, including coordination modulation, hybrid structures, carbon nanostructures, and single-atom materials. Particularly, we offer unique insights into enzyme structure mimicking, microenvironment modulation, structure evolutions, and theoretical understanding for revealing mechanisms. Thereafter, the representative biotherapeutic applications have been summarized with a unique focus on structural property-reactivity relationships. Finally, we systematically highlight the current challenges and future perspectives. Overall, this is a timely review that focuses on creating MOF structures for reactive-oxygen biocatalysis from structure-activity relationships to biological properties. We envision this cutting review will substantially stimulate the development and widespread utilization of MOFs-engineered ROCMs in biomedical applications.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.