Evaluation of quality characteristics of ultrasound–treated browntop millet grains

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS Chemical Engineering and Processing - Process Intensification Pub Date : 2024-07-26 DOI:10.1016/j.cep.2024.109919
{"title":"Evaluation of quality characteristics of ultrasound–treated browntop millet grains","authors":"","doi":"10.1016/j.cep.2024.109919","DOIUrl":null,"url":null,"abstract":"<div><p>Modification of grains using green technologies receiving more attention in today's world for better utilization. Browntop millet was treated at a frequency of 20 kHz using probe ultrasound at 100 &amp; 200 W for 5–35 min of 5 min intervals between the treatment at the ratio of 1:5 (w/v). The impact of treatment on grains was evaluated utilizing several parameters, such as relative crystallinity (RC) of the treated samples, which decreased from 59.78 % to 34.41 % at 100 W and 22.84 % at 200 W. Change in the surface morphology of the samples was observed by SEM which had a positive impact on water absorption as it increased from 164% to 179.2%; thus, the cooking time in treated samples is reduced from 18.8 to 7.9 min. Thermal and pasting properties showed a decrease in temperature and increase in viscosity of the treated samples from 74 to 70.7 °C, and 4.23 Pa.s to 11.50 Pa.s this shows that grains with lesser gelatinized temperature tends to cook fast and has the softer texture, thus sonicated samples have better eating quality. Among all the trials 200 W 20 min were the optimal conditions for the browntop millet with lesser cooking time, relative crystallinity.</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124002575","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Modification of grains using green technologies receiving more attention in today's world for better utilization. Browntop millet was treated at a frequency of 20 kHz using probe ultrasound at 100 & 200 W for 5–35 min of 5 min intervals between the treatment at the ratio of 1:5 (w/v). The impact of treatment on grains was evaluated utilizing several parameters, such as relative crystallinity (RC) of the treated samples, which decreased from 59.78 % to 34.41 % at 100 W and 22.84 % at 200 W. Change in the surface morphology of the samples was observed by SEM which had a positive impact on water absorption as it increased from 164% to 179.2%; thus, the cooking time in treated samples is reduced from 18.8 to 7.9 min. Thermal and pasting properties showed a decrease in temperature and increase in viscosity of the treated samples from 74 to 70.7 °C, and 4.23 Pa.s to 11.50 Pa.s this shows that grains with lesser gelatinized temperature tends to cook fast and has the softer texture, thus sonicated samples have better eating quality. Among all the trials 200 W 20 min were the optimal conditions for the browntop millet with lesser cooking time, relative crystallinity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估经超声波处理的棕顶黍谷粒的质量特性
为了更好地利用谷物,当今世界越来越重视利用绿色技术对谷物进行改良。使用频率为 20 kHz、功率为 100 & 200 W 的探头超声波,以 1:5 的比例(w/v)处理棕顶小米,每次处理间隔 5 分钟,持续 5-35 分钟。通过扫描电镜观察到样品表面形态的变化,这对吸水率有积极影响,吸水率从 164% 提高到 179.2%;因此,处理后样品的蒸煮时间从 18.8 分钟缩短到 7.9 分钟。热性能和糊化性能表明,处理过的样品温度降低,粘度增加,从 74°C 降至 70.7°C,4.23Pa.s 升至 11.50Pa.s。在所有试验中,200 W 20 min 是棕顶小米的最佳蒸煮条件,蒸煮时间较短,相对结晶度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
期刊最新文献
The potential of integrating solar-powered membrane distillation with a humidification–dehumidification system to recover potable water from textile wastewater Optimization of antimicrobial properties of essential oils under rotating magnetic field Parametric design of curved hydrocyclone using data points and its separation enhancement mechanism Supercritical carbon dioxide as solvent for manufacturing of ibuprofen loaded gelatine sponges with enhanced performance Investigation of gas-liquid mass transfer in slurry systems driven by the coaxial mixer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1