Towards accurate Diabetic Foot Ulcer image classification: Leveraging CNN pre-trained features and extreme learning machine

Q2 Health Professions Smart Health Pub Date : 2024-07-24 DOI:10.1016/j.smhl.2024.100502
Fitri Arnia , Khairun Saddami , Roslidar Roslidar , Rusdha Muharar , Khairul Munadi
{"title":"Towards accurate Diabetic Foot Ulcer image classification: Leveraging CNN pre-trained features and extreme learning machine","authors":"Fitri Arnia ,&nbsp;Khairun Saddami ,&nbsp;Roslidar Roslidar ,&nbsp;Rusdha Muharar ,&nbsp;Khairul Munadi","doi":"10.1016/j.smhl.2024.100502","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetes mellitus (DM) can cause irreversible tissue damage in the legs, leading to foot ulcers that are difficult to heal. Early detection is crucial in preventing further complications. This study proposes a detection system for foot ulcers using a hybrid approach that combines deep convolutional neural networks (CNN) with an extreme learning machine (ELM). We explore the features of popular pre-trained models, including ResNet101, DenseNet201, MobileNetv2, EfficientNetB0, InceptionResNetv2, and NasNet mobile. Given the challenge of a limited dataset, traditional data augmentation may introduce inter-class bias. Therefore, we adopt a fusion of CNN and ELM to mitigate this issue. The experiments show promising results, with ResNet101, DenseNet201, InceptionResNetv2, MobileNetV2, NasNet mobile, and EfficientNetB0 achieving accuracies of 80%, 76.67%, 80%, 83.34%, 80%, and 80%, respectively. Our analysis reveals that MobileNetV2 provides the best feature representation, achieving the highest accuracy rate of 83.34% with zero false positives. Based on the findings, we suggest that the proposed hybrid method can accurately recognize DM foot images, providing a potential tool for early diagnosis and treatment of foot ulcers.</p></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"33 ","pages":"Article 100502"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352648324000588/pdfft?md5=fd85ad0912474ec33c2bdf458506b97e&pid=1-s2.0-S2352648324000588-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648324000588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes mellitus (DM) can cause irreversible tissue damage in the legs, leading to foot ulcers that are difficult to heal. Early detection is crucial in preventing further complications. This study proposes a detection system for foot ulcers using a hybrid approach that combines deep convolutional neural networks (CNN) with an extreme learning machine (ELM). We explore the features of popular pre-trained models, including ResNet101, DenseNet201, MobileNetv2, EfficientNetB0, InceptionResNetv2, and NasNet mobile. Given the challenge of a limited dataset, traditional data augmentation may introduce inter-class bias. Therefore, we adopt a fusion of CNN and ELM to mitigate this issue. The experiments show promising results, with ResNet101, DenseNet201, InceptionResNetv2, MobileNetV2, NasNet mobile, and EfficientNetB0 achieving accuracies of 80%, 76.67%, 80%, 83.34%, 80%, and 80%, respectively. Our analysis reveals that MobileNetV2 provides the best feature representation, achieving the highest accuracy rate of 83.34% with zero false positives. Based on the findings, we suggest that the proposed hybrid method can accurately recognize DM foot images, providing a potential tool for early diagnosis and treatment of foot ulcers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现准确的糖尿病足溃疡图像分类:利用 CNN 预训练特征和极端学习机器
糖尿病(DM)会对腿部造成不可逆的组织损伤,导致难以愈合的足部溃疡。早期检测对于预防进一步的并发症至关重要。本研究采用深度卷积神经网络(CNN)与极端学习机(ELM)相结合的混合方法,提出了一种足部溃疡检测系统。我们探索了流行的预训练模型的特征,包括 ResNet101、DenseNet201、MobileNetv2、EfficientNetB0、InceptionResNetv2 和 NasNet mobile。鉴于数据集有限的挑战,传统的数据扩增可能会引入类间偏差。因此,我们采用了融合 CNN 和 ELM 的方法来缓解这一问题。实验结果很有希望,ResNet101、DenseNet201、InceptionResNetv2、MobileNetV2、NasNet mobile 和 EfficientNetB0 的准确率分别达到了 80%、76.67%、80%、83.34%、80% 和 80%。我们的分析表明,MobileNetV2 提供了最佳的特征表示,准确率最高,达到 83.34%,误报率为零。基于这些研究结果,我们认为所提出的混合方法能够准确识别 DM 足部图像,为足部溃疡的早期诊断和治疗提供了一种潜在的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
期刊最新文献
PulseSight : A novel method for contactless oxygen saturation (SpO2) monitoring using smartphone cameras, remote photoplethysmography and machine learning Editorial Board Smart health practices: Strategies to improve healthcare efficiency through digital twin technology Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study SAFE: Sound Analysis for Fall Event detection using machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1