Enhancing Momentum Trading with Macroeconomic Indicators- A Strategic Approach

Mohit Apte
{"title":"Enhancing Momentum Trading with Macroeconomic Indicators- A Strategic Approach","authors":"Mohit Apte","doi":"10.55524/ijircst.2024.12.4.11","DOIUrl":null,"url":null,"abstract":"Traditional momentum trading strategies capitalize on existing market trends but often overlook broader macroeconomic contexts, potentially limiting their effectiveness during periods of economic fluctuation. This paper introduces an enhanced momentum trading strategy that incorporates key economic indicators—GDP, inflation, unemployment rates, and interest rates—to provide a more robust framework capable of adapting to changing economic conditions. By integrating these macroeconomic factors, the strategy aims to improve predictive accuracy and performance stability. Using data from the S&P 600 SmallCap Index, we modified the conventional momentum calculation to include weighted contributions from these indicators, creating a comprehensive 'new momentum' score. Preliminary back testing, comparing this enhanced strategy against traditional methods, shows promising improvements in risk-adjusted returns. This paper not only details the methodology and results of integrating economic indicators into momentum trading but also discusses the implications for risk management and potential areas for future research.","PeriodicalId":218345,"journal":{"name":"International Journal of Innovative Research in Computer Science and Technology","volume":"5 9‐10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Research in Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55524/ijircst.2024.12.4.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional momentum trading strategies capitalize on existing market trends but often overlook broader macroeconomic contexts, potentially limiting their effectiveness during periods of economic fluctuation. This paper introduces an enhanced momentum trading strategy that incorporates key economic indicators—GDP, inflation, unemployment rates, and interest rates—to provide a more robust framework capable of adapting to changing economic conditions. By integrating these macroeconomic factors, the strategy aims to improve predictive accuracy and performance stability. Using data from the S&P 600 SmallCap Index, we modified the conventional momentum calculation to include weighted contributions from these indicators, creating a comprehensive 'new momentum' score. Preliminary back testing, comparing this enhanced strategy against traditional methods, shows promising improvements in risk-adjusted returns. This paper not only details the methodology and results of integrating economic indicators into momentum trading but also discusses the implications for risk management and potential areas for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用宏观经济指标加强动量交易--一种战略方法
传统的动量交易策略利用现有的市场趋势,但往往忽略了更广泛的宏观经济背景,在经济波动时期可能会限制其有效性。本文介绍了一种增强型动量交易策略,该策略纳入了主要经济指标--国内生产总值、通货膨胀率、失业率和利率,从而提供了一个能够适应不断变化的经济条件的更稳健的框架。通过整合这些宏观经济因素,该策略旨在提高预测准确性和业绩稳定性。利用标准普尔 600 小型股指数的数据,我们修改了传统的动量计算方法,将这些指标的加权贡献纳入其中,从而创建了一个全面的 "新动量 "得分。初步的回溯测试将这一增强型策略与传统方法进行了比较,结果表明风险调整后回报率有了可喜的提高。本文不仅详细介绍了将经济指标纳入动量交易的方法和结果,还讨论了对风险管理的影响以及未来研究的潜在领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comprehensive Review on Machine Learning Applications in Cloud Computing A Comparative Study of ChatGPT, Gemini, and Perplexity Exploring the Synergy of Web Usage Data and Content Mining for Personalized Effectiveness A Comparative Study of Cat Swarm Algorithm for Graph Coloring Problem: Convergence Analysis and Performance Evaluation A Comprehensive Review- Building A Secure Social Media Environment for Kids- Automated Content Filtering with Biometric Feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1