Mengyu Han, Huifeng Zheng, Yumeng Gao, Zhuangxin Zhou, Xiangchen Liu
{"title":"Detection of near-surface defects in viscoelastic material based on focused ultrasound thermal effects","authors":"Mengyu Han, Huifeng Zheng, Yumeng Gao, Zhuangxin Zhou, Xiangchen Liu","doi":"10.1016/j.ultras.2024.107415","DOIUrl":null,"url":null,"abstract":"<div><p>Viscoelastic materials will absorb and dissipate energy under stress, resulting in energy loss and heat generation. The conventional non-destructive testing methods have certain limitations when it comes to detecting near-surface defects in viscoelastic materials. In this paper, a detection method of near-surface defects based on focused ultrasonic thermal effect is proposed. Firstly, the difference in thermal effects caused by defective and non-defective regions of the material under ultrasound is analyzed according to the stress response equation of viscoelastic materials, and the detection principle is elucidated. Secondly, the feasibility of this method is verified through finite element simulation with an example of plexiglass material Subsequently, the variations in the surface temperature distribution of defective specimens with varying diameters and depths are analyzed. Finally, experimental validation reveals that ultrasonic waves operating at 1.12 MHz successfully detect artificial defects with a diameter of 1 mm. With the increase of the equivalent diameter of the defect, the width of the low-temperature depression area in the surface temperature field exhibits a linear increase relationship. With the increase of the defect depth, the surface temperature difference between the corresponding position of the defective and the surrounding non-defective area gradually decreases. This method effectively overcomes the half-wavelength limitation and introduces a novel detection approach for near-surface defect identification in viscoelastic materials such as plexiglass.</p></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"143 ","pages":"Article 107415"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24001781","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Viscoelastic materials will absorb and dissipate energy under stress, resulting in energy loss and heat generation. The conventional non-destructive testing methods have certain limitations when it comes to detecting near-surface defects in viscoelastic materials. In this paper, a detection method of near-surface defects based on focused ultrasonic thermal effect is proposed. Firstly, the difference in thermal effects caused by defective and non-defective regions of the material under ultrasound is analyzed according to the stress response equation of viscoelastic materials, and the detection principle is elucidated. Secondly, the feasibility of this method is verified through finite element simulation with an example of plexiglass material Subsequently, the variations in the surface temperature distribution of defective specimens with varying diameters and depths are analyzed. Finally, experimental validation reveals that ultrasonic waves operating at 1.12 MHz successfully detect artificial defects with a diameter of 1 mm. With the increase of the equivalent diameter of the defect, the width of the low-temperature depression area in the surface temperature field exhibits a linear increase relationship. With the increase of the defect depth, the surface temperature difference between the corresponding position of the defective and the surrounding non-defective area gradually decreases. This method effectively overcomes the half-wavelength limitation and introduces a novel detection approach for near-surface defect identification in viscoelastic materials such as plexiglass.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.