Pub Date : 2024-11-13DOI: 10.1016/j.ultras.2024.107512
Xuelian Gao , Tingxuan Yang , Dan Li, Yanyan Fang, Jianqiu Zhang, Dean Ta
In Lamb wave imaging based on a phased array, higher frequencies narrowband excitation pulses enable more precise damage detection and localization. However, due to the size constraints of individual transducer elements, the spacing between array elements may exceed half the wavelength of the excitation signal. This can lead to a grating lobe effect. To overcome this limitation, a Lamb wave imaging method via dual-frequency fusion for grating lobe effect compensation is proposed in this study. Analyses indicate that the grating lobe effect may introduce artifacts or distortions in the imaging results. This method utilizes two frequencies of narrowband excitation pulses for imaging and subsequently fuses the results. By doing so, the imaging artifacts caused by the grating lobes produced by high-frequency narrowband excitation pulses are effectively compensated. The proposed method is validated through simulations and experiments on an aluminum plate, showing superior accuracy, contrast, and imaging quality.
{"title":"Lamb wave imaging via dual-frequency fusion for grating lobe effect compensation","authors":"Xuelian Gao , Tingxuan Yang , Dan Li, Yanyan Fang, Jianqiu Zhang, Dean Ta","doi":"10.1016/j.ultras.2024.107512","DOIUrl":"10.1016/j.ultras.2024.107512","url":null,"abstract":"<div><div>In Lamb wave imaging based on a phased array, higher frequencies narrowband excitation pulses enable more precise damage detection and localization. However, due to the size constraints of individual transducer elements, the spacing between array elements may exceed half the wavelength of the excitation signal. This can lead to a grating lobe effect. To overcome this limitation, a Lamb wave imaging method via dual-frequency fusion for grating lobe effect compensation is proposed in this study. Analyses indicate that the grating lobe effect may introduce artifacts or distortions in the imaging results. This method utilizes two frequencies of narrowband excitation pulses for imaging and subsequently fuses the results. By doing so, the imaging artifacts caused by the grating lobes produced by high-frequency narrowband excitation pulses are effectively compensated. The proposed method is validated through simulations and experiments on an aluminum plate, showing superior accuracy, contrast, and imaging quality.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107512"},"PeriodicalIF":3.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laser ultrasonic imaging is a promising technique for structural health monitoring because it is noncontact and nondestructive. However, this technique will only find more industrial applications if it has a high signal-to-noise ratio (SNR) and short data acquisition time. In existing delay-and-sum algorithms, such as the synthetic aperture focusing technique (SAFT) and the total focusing method, a higher SNR requires more A-scan signals, which mean a longer data acquisition time. It is difficult for these algorithms to consider these two aspects simultaneously. Thus, in this study, we propose a post-processing algorithm that extracts neglected information from laser ultrasonic B-scan data to improve the SNR of the SAFT without increasing the data acquisition time. The SNR was increased by multiplying the SAFT image intensity with the echo array similarity defined using the directivity and echo shape information of laser ultrasound. In experiments, SNR was increased from 4.1 dB to 31.3 dB for two submillimeter defects having a diameter of 0.5 mm and depth of 15 mm. Deeper defects can be detected because of the improved SNR. In this study, two submillimeter defects with a depth of 30 mm were detected. Compared with existing delay-and-sum algorithms, the proposed algorithm performs well in terms of both SNR and data acquisition time, which can promote its use in more industrial applications.
激光超声波成像技术具有非接触和无损的特点,是一种很有前途的结构健康监测技术。然而,只有在信噪比(SNR)高和数据采集时间短的情况下,这种技术才能得到更多的工业应用。在现有的延迟和算法中,如合成孔径聚焦技术(SAFT)和全聚焦法,较高的信噪比需要更多的 A 扫描信号,这意味着较长的数据采集时间。这些算法很难同时考虑这两个方面。因此,在本研究中,我们提出了一种后处理算法,从激光超声 B 扫描数据中提取被忽略的信息,在不增加数据采集时间的情况下提高 SAFT 的信噪比。利用激光超声的指向性和回波形状信息定义的回波阵列相似度乘以 SAFT 图像强度,从而提高信噪比。在实验中,对于两个直径为 0.5 毫米、深度为 15 毫米的亚毫米缺陷,信噪比从 4.1 分贝提高到 31.3 分贝。由于信噪比的提高,可以检测到更深的缺陷。在这项研究中,检测到了两个深度为 30 毫米的亚毫米缺陷。与现有的延迟求和算法相比,所提出的算法在信噪比和数据采集时间方面都有很好的表现,可以促进其在更多工业应用中的使用。
{"title":"Improving the signal-to-noise ratio of the laser ultrasonic synthetic aperture focusing technique to detect submillimeter internal defects using echo array similarity","authors":"Huabin He, Jianguo He, Zhihui Xia, Kaihua Sun, Chao Wang, Qian Liu","doi":"10.1016/j.ultras.2024.107513","DOIUrl":"10.1016/j.ultras.2024.107513","url":null,"abstract":"<div><div>Laser ultrasonic imaging is a promising technique for structural health monitoring because it is noncontact and nondestructive. However, this technique will only find more industrial applications if it has a high signal-to-noise ratio (SNR) and short data acquisition time. In existing delay-and-sum algorithms, such as the synthetic aperture focusing technique (SAFT) and the total focusing method, a higher SNR requires more A-scan signals, which mean a longer data acquisition time. It is difficult for these algorithms to consider these two aspects simultaneously. Thus, in this study, we propose a post-processing algorithm that extracts neglected information from laser ultrasonic B-scan data to improve the SNR of the SAFT without increasing the data acquisition time. The SNR was increased by multiplying the SAFT image intensity with the echo array similarity defined using the directivity and echo shape information of laser ultrasound. In experiments, SNR was increased from 4.1 dB to 31.3 dB for two submillimeter defects having a diameter of 0.5 mm and depth of 15 mm. Deeper defects can be detected because of the improved SNR. In this study, two submillimeter defects with a depth of 30 mm were detected. Compared with existing delay-and-sum algorithms, the proposed algorithm performs well in terms of both SNR and data acquisition time, which can promote its use in more industrial applications.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107513"},"PeriodicalIF":3.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.ultras.2024.107514
Qinglei Zeng , Yuetongxu Li , Zhaoyu Deng , Gutian Zhang , Chengwei Zhang , Haifeng Huang , Xiaozhou Liu
Non-invasive, accurate diagnosis and treatment have increasingly gained attention in medical research. The nonlinear response mechanism of ultrasound contrast agents and their medical application have become major topics in ultrasound imaging studies. This paper reports on a second-harmonic focused ultrasonic device based on micro-bubble contrast agents, which is designed to solve the problems associated with a weak second-harmonic intensity. A periodic array of circular holes is embedded in the center of a specifically shaped resin plate, and contrast agents are encapsulated in the circular holes using thin resin tape. The functional mechanism is theoretically explained and experimentally verified. This device enables second-harmonic ultrasound imaging with a higher ultrasonic lateral resolution and signal-to-noise ratio than the conventional system without the device.
{"title":"Research on the second-harmonic focused ultrasonic device based on micro-bubble contrast agents","authors":"Qinglei Zeng , Yuetongxu Li , Zhaoyu Deng , Gutian Zhang , Chengwei Zhang , Haifeng Huang , Xiaozhou Liu","doi":"10.1016/j.ultras.2024.107514","DOIUrl":"10.1016/j.ultras.2024.107514","url":null,"abstract":"<div><div>Non-invasive, accurate diagnosis and treatment have increasingly gained attention in medical research. The nonlinear response mechanism of ultrasound contrast agents and their medical application have become major topics in ultrasound imaging studies. This paper reports on a second-harmonic focused ultrasonic device based on micro-bubble contrast agents, which is designed to solve the problems associated with a weak second-harmonic intensity. A periodic array of circular holes is embedded in the center of a specifically shaped resin plate, and contrast agents are encapsulated in the circular holes using thin resin tape. The functional mechanism is theoretically explained and experimentally verified. This device enables second-harmonic ultrasound imaging with a higher ultrasonic lateral resolution and signal-to-noise ratio than the conventional system without the device.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107514"},"PeriodicalIF":3.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.ultras.2024.107494
Romain Rousseau, Pierre Grandjean, Nicolas Quaegebeur, Loïc Charlebois-Vachon, Philippe Micheau
This paper presents a new type of airborne transducer for generating broadband ultrasound with a high Sound Pressure Level (SPL). The concept is based on the Harmonic Acoustic Pneumatic Source (HAPS) that uses pressurized air in conjunction with a flow chopper made up of a rotating cage with slots connected to a specific exhaust. The fundamental frequency depends on the number of slots and the rotation speed of the cage. An analytical model of the HAPS coupled with a numerical model of the exhaust is used to predict the radiated acoustic pressure and to estimate the influence of dimensional parameters on pressure level generated by the source. Experiments are conducted with two cages: one with one slot in order to generate pulses periodically and one with slots to generate periodic sound. The level of sound pressure is measured as a function of distance ( to m), the cage rotation (up to krpm) and directivity ( to °). For the fundamental frequency at kHz, the maximum SPL of dB ( Pa rms) is /measured at m, and decreases to dB ( Pa rms) at m. At m, the second and third harmonics can generate a SPL equal or greater than dB above kHz and up to kHz. Discrepancies between the experiments results and numerical model are observed in terms of SPL, directivity and in-axis pressure.
本文介绍了一种用于产生高声压级(SPL)宽带超声波的新型机载换能器。该概念基于谐波声学气动源(HAPS),它使用加压空气与由旋转笼组成的斩流器,旋转笼上的槽与特定的排气管相连。基频取决于槽的数量和笼子的旋转速度。HAPS 的分析模型与排气的数值模型相结合,用于预测辐射声压,并估算尺寸参数对声源产生的压力水平的影响。实验使用了两个笼子:一个带有一个槽,用于产生周期性脉冲;另一个带有 122 个槽,用于产生周期性声音。测量的声压级是距离(0.004 至 0.5 米)、笼子旋转(最高 11 千转/分)和指向性(0 至 90°)的函数。对于 22 kHz 的基频,在 0.004 m 处测得的最大声压级为 150 dB(632 Pa rms),在 0.5 m 处降至 122 dB(35 Pa rms)。实验结果与数值模型在声压级、指向性和轴内压力方面存在差异。
{"title":"Generation of broadband airborne ultrasound using an Harmonic Acoustic Pneumatic Source","authors":"Romain Rousseau, Pierre Grandjean, Nicolas Quaegebeur, Loïc Charlebois-Vachon, Philippe Micheau","doi":"10.1016/j.ultras.2024.107494","DOIUrl":"10.1016/j.ultras.2024.107494","url":null,"abstract":"<div><div>This paper presents a new type of airborne transducer for generating broadband ultrasound with a high Sound Pressure Level (SPL). The concept is based on the Harmonic Acoustic Pneumatic Source (HAPS) that uses pressurized air in conjunction with a flow chopper made up of a rotating cage with slots connected to a specific exhaust. The fundamental frequency depends on the number of slots and the rotation speed of the cage. An analytical model of the HAPS coupled with a numerical model of the exhaust is used to predict the radiated acoustic pressure and to estimate the influence of dimensional parameters on pressure level generated by the source. Experiments are conducted with two cages: one with one slot in order to generate pulses periodically and one with <span><math><mrow><mn>122</mn></mrow></math></span> slots to generate periodic sound. The level of sound pressure is measured as a function of distance (<span><math><mrow><mn>0</mn><mo>.</mo><mn>004</mn></mrow></math></span> to <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m), the cage rotation (up to <span><math><mrow><mn>11</mn></mrow></math></span> krpm) and directivity (<span><math><mn>0</mn></math></span> to <span><math><mrow><mn>90</mn></mrow></math></span>°). For the fundamental frequency at <span><math><mrow><mn>22</mn></mrow></math></span> kHz, the maximum SPL of <span><math><mrow><mn>150</mn></mrow></math></span> dB (<span><math><mrow><mn>632</mn></mrow></math></span> Pa rms) is /measured at <span><math><mrow><mn>0</mn><mo>.</mo><mn>004</mn></mrow></math></span> m, and decreases to <span><math><mrow><mn>122</mn></mrow></math></span> dB (<span><math><mrow><mn>35</mn></mrow></math></span> Pa rms) at <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m. At <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m, the second and third harmonics can generate a SPL equal or greater than <span><math><mrow><mn>115</mn></mrow></math></span> dB above <span><math><mrow><mn>22</mn></mrow></math></span> kHz and up to <span><math><mrow><mn>66</mn></mrow></math></span> kHz. Discrepancies between the experiments results and numerical model are observed in terms of SPL, directivity and in-axis pressure.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107494"},"PeriodicalIF":3.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.ultras.2024.107510
Yi He , Guojie Luo , Jie Huang , Yehai Li , Hoon Sohn , Zhongqing Su
The recent advances in micromanufacturing have been pushing boundaries of the new generation of semiconductor devices, which, in the meantime, brings new challenges in the material and structural characterization – a key step to ensure the device quality through the micromanufacturing process. An ultrafast laser-enable optoacoustic characterization methodology is developed, targeting in situ calibration and delineation of the three-dimensional (3-D), nanoscopic interior features of opaque semiconductor chips. With the guidance of ultrafast electron–phonon coupling effect and velocity-perturbated optical interference, a femtosecond-laser pump–probe set-up based on Sagnac interferometer is configured to generate and acquire picosecond ultrasonic bulk waves (P-UBWs) traversing the microchips. The interior features of the microchips shift the phase of acquired P-UBW signals, reflected in the perturbed probe laser beam. The phase shifts are calibrated to compute signal correlation of P-UBW signals between different acquiring positions, whereby to delineate the interior features in an intuitive manner. The approach is experimentally validated by characterizing nanoscopic, invisible interior aurum(Au)-gratings with periodically varied depths in typical microchips. Results highlight that the 3-D nanoscopic features of the microchips can be revealed with a microscopic and a nanoscopic spatial resolution, respectively along the transverse and depth directions of the chip, where the Au-gratings become “visible” with a depth variance of a few tens of nanometers only. This proposed approach has provided a fast, nondestructive approach to “see” through an opaque microchip with a nanoscopic resolution.
{"title":"Ultrafast laser-enabled optoacoustic characterization of three-dimensional, nanoscopic interior features of microchips","authors":"Yi He , Guojie Luo , Jie Huang , Yehai Li , Hoon Sohn , Zhongqing Su","doi":"10.1016/j.ultras.2024.107510","DOIUrl":"10.1016/j.ultras.2024.107510","url":null,"abstract":"<div><div>The recent advances in micromanufacturing have been pushing boundaries of the new generation of semiconductor devices, which, in the meantime, brings new challenges in the material and structural characterization – a key step to ensure the device quality through the micromanufacturing process. An ultrafast laser-enable optoacoustic characterization methodology is developed, targeting <em>in situ</em> calibration and delineation of the three-dimensional (3-D), nanoscopic interior features of opaque semiconductor chips. With the guidance of ultrafast electron–phonon coupling effect and velocity-perturbated optical interference, a femtosecond-laser pump–probe set-up based on Sagnac interferometer is configured to generate and acquire picosecond ultrasonic bulk waves (P-UBWs) traversing the microchips. The interior features of the microchips shift the phase of acquired P-UBW signals, reflected in the perturbed probe laser beam. The phase shifts are calibrated to compute signal correlation of P-UBW signals between different acquiring positions, whereby to delineate the interior features in an intuitive manner. The approach is experimentally validated by characterizing nanoscopic, invisible interior aurum(Au)-gratings with periodically varied depths in typical microchips. Results highlight that the 3-D nanoscopic features of the microchips can be revealed with a microscopic and a nanoscopic spatial resolution, respectively along the transverse and depth directions of the chip, where the Au-gratings become “visible” with a depth variance of a few tens of nanometers only. This proposed approach has provided a fast, nondestructive approach to “see” through an opaque microchip with a nanoscopic resolution.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107510"},"PeriodicalIF":3.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.ultras.2024.107511
Zhongyan Jin , Qihong Zhou , Zeguang Pei , Ge Chen
Localization and size estimation of composite damage are challenging but essential for composite performance evaluation. This paper proposes a new methodology for the size estimation of multi-damage in composite laminates using Lamb wave technology. The pure A0 modal of Lamb wave is excited to avoid dispersion and multi-modal effects of Lamb wave. An extraction algorithm is introduced to obtain the first wave packet and time-of-flight. According to the results obtained by the extraction algorithm, the Bayesian-hybrid localization algorithm based on the reconstruction algorithm for probabilistic inspection of damage and modified delay-and-sum (MDAS) is performed to localize damages. The damage boundaries are obtained through convex enveloping a series of damage boundary points identified by MDAS. An adaptive Gaussian mixture model based on Akaike’s Information Criterion and Bayesian Information Criterion is designed to remove abnormal boundary points. The proposed method is numerically investigated and validated through multi-damage experiments. The results demonstrate that it can accurately estimate the locations and boundaries of multi-damage in composite laminates.
{"title":"An algorithm for multi-damage size estimation of composite laminates","authors":"Zhongyan Jin , Qihong Zhou , Zeguang Pei , Ge Chen","doi":"10.1016/j.ultras.2024.107511","DOIUrl":"10.1016/j.ultras.2024.107511","url":null,"abstract":"<div><div>Localization and size estimation of composite damage are challenging but essential for composite performance evaluation. This paper proposes a new methodology for the size estimation of multi-damage in composite laminates using Lamb wave technology. The pure A<sub>0</sub> modal of Lamb wave is excited to avoid dispersion and multi-modal effects of Lamb wave. An extraction algorithm is introduced to obtain the first wave packet and time-of-flight. According to the results obtained by the extraction algorithm, the Bayesian-hybrid localization algorithm based on the reconstruction algorithm for probabilistic inspection of damage and modified delay-and-sum (MDAS) is performed to localize damages. The damage boundaries are obtained through convex enveloping a series of damage boundary points identified by MDAS. An adaptive Gaussian mixture model based on Akaike’s Information Criterion and Bayesian Information Criterion is designed to remove abnormal boundary points. The proposed method is numerically investigated and validated through multi-damage experiments. The results demonstrate that it can accurately estimate the locations and boundaries of multi-damage in composite laminates.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107511"},"PeriodicalIF":3.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.ultras.2024.107508
Juxing He , Shibin Zhang , Pengcheng Zheng , Xiaoli Fang , Hulin Yao , Mijing Sun , Dongchen Sui , Yanlong Yao , Chongxi Song , Zheng Zhou , Xin Ou
With the exploding demand of rapid information transmission, high-frequency acoustic filtering devices are becoming an immediate need. Longitudinal leaky surface acoustic wave (LL-SAW) devices with unique advantages can be a promising platform. In this paper, we introduce a 100 nm intermediate oxide layer into the X-cut lithium niobate on silicon carbide (LiNbO3/SiC) to improve the in-band performance of LL-SAW resonators. First, the dispersion curves of the structures are analyzed by finite element method. In this part, we successfully interpret the intrinsic low quality factor (Q) of LL-SAW on LiNbO3/SiC in general design, and predict the enhancement of Q by introducing an intermediate oxide layer without degradation on spurious response. Then, one port resonators considered in the simulation are fabricated and measured. As a result, enhancements in Bode Q among the whole passband are confirmed. Compared with devices state of art, resonators with leading performances are demonstrated. The fabricated resonators have peak-valley admittance ratio of 63.87 dB, Bode Q of ∼300 at fr and ∼530 at far, 15.66 % and phase velocity of 6187.3 m/s. Additionally, the resonant frequency of SH1 mode shifts to higher frequency. This work enables the design of next generation high frequency mobile communication filters.
{"title":"Band edge modulation for high-performance LL-SAW resonators on LiNbO3/SiC by introducing an ultra-thin intermediate oxide layer","authors":"Juxing He , Shibin Zhang , Pengcheng Zheng , Xiaoli Fang , Hulin Yao , Mijing Sun , Dongchen Sui , Yanlong Yao , Chongxi Song , Zheng Zhou , Xin Ou","doi":"10.1016/j.ultras.2024.107508","DOIUrl":"10.1016/j.ultras.2024.107508","url":null,"abstract":"<div><div>With the exploding demand of rapid information transmission, high-frequency acoustic filtering devices are becoming an immediate need. Longitudinal leaky surface acoustic wave (LL-SAW) devices with unique advantages can be a promising platform. In this paper, we introduce a 100 nm intermediate oxide layer into the X-cut lithium niobate on silicon carbide (LiNbO<sub>3</sub>/SiC) to improve the in-band performance of LL-SAW resonators. First, the dispersion curves of the structures are analyzed by finite element method. In this part, we successfully interpret the intrinsic low quality factor (<em>Q</em>) of LL-SAW on LiNbO<sub>3</sub>/SiC in general design, and predict the enhancement of <em>Q</em> by introducing an intermediate oxide layer without degradation on spurious response. Then, one port resonators considered in the simulation are fabricated and measured. As a result, enhancements in <em>Bode Q</em> among the whole passband are confirmed. Compared with devices state of art, resonators with leading performances are demonstrated. The fabricated resonators have peak-valley admittance ratio of 63.87 dB, <em>Bode Q</em> of ∼300 at <em>f<sub>r</sub></em> and ∼530 at <em>f<sub>ar</sub></em>, <span><math><mrow><msubsup><mtext>k</mtext><mrow><mtext>eff</mtext></mrow><mtext>2</mtext></msubsup><mspace></mspace><mtext>of</mtext></mrow></math></span> 15.66 % and phase velocity of 6187.3 m/s. Additionally, the resonant frequency of SH1 mode shifts to higher frequency. This work enables the design of next generation high frequency mobile communication filters.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107508"},"PeriodicalIF":3.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Endoplasmic reticulum (ER) stress is associated with oxidative stress, which is integral to the development of various pathological conditions, including neurodegenerative disorders. In this study, using NSC-34-a hybrid cell line established by fusing motor neuron–rich embryonic spinal cord cells with mouse neuroblastoma cells-we investigated the effects of low-intensity pulsed ultrasound (LIPUS) stimulation on oxidative (reactive oxygen species)/ER stress-induced neurodegeneration. An ultrasound transducer with a center frequency of 1.15 MHz and a spatial peak temporal average intensity of 357 mW/cm2 was used for delivering ultrasound (for 8 min, via a water-filled tube) to motor neuron cells seeded in a plastic culture dish. LIPUS stimulation significantly increased the level of the antiapoptotic protein B-cell lymphoma 2 (BCL-2) and inhibited the expression of apoptosis-associated proteins such as BCL-2-associated X protein (BAX), CCAAT/enhancer-binding protein-homologous protein (CHOP), and caspase-12, thus extending the survival of motor neurons. LIPUS stimulation also enhanced Ca2+ signaling and activated the Ca2+-dependent transcription factors as nuclear factor of activated T cells (NFAT) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Furthermore, LIPUS stimulation induced the activation of the serine/threonine kinase protein kinase B (AKT). Thus, LIPUS stimulation prevented oxidative/ER stress–mediated mitochondrial dysfunction. In conclusion, as a safe and noninvasive method, LIPUS stimulation can facilitate further development of ultrasound neuromodulation as a tool for neuroscience research.
{"title":"Low-intensity pulsed ultrasound reduces oxidative and endoplasmic reticulum stress in motor neuron cells","authors":"Thi-Thuyet Truong , Chih-Chung Huang , Wen-Tai Chiu","doi":"10.1016/j.ultras.2024.107499","DOIUrl":"10.1016/j.ultras.2024.107499","url":null,"abstract":"<div><div>Endoplasmic reticulum (ER) stress is associated with oxidative stress, which is integral to the development of various pathological conditions, including neurodegenerative disorders. In this study, using NSC-34-a hybrid cell line established by fusing motor neuron–rich embryonic spinal cord cells with mouse neuroblastoma cells-we investigated the effects of low-intensity pulsed ultrasound (LIPUS) stimulation on oxidative (reactive oxygen species)/ER stress-induced neurodegeneration. An ultrasound transducer with a center frequency of 1.15 MHz and a spatial peak temporal average intensity of 357 mW/cm<sup>2</sup> was used for delivering ultrasound (for 8 min, via a water-filled tube) to motor neuron cells seeded in a plastic culture dish. LIPUS stimulation significantly increased the level of the antiapoptotic protein B-cell lymphoma 2 (BCL-2) and inhibited the expression of apoptosis-associated proteins such as BCL-2-associated X protein (BAX), CCAAT/enhancer-binding protein-homologous protein (CHOP), and caspase-12, thus extending the survival of motor neurons. LIPUS stimulation also enhanced Ca<sup>2+</sup> signaling and activated the Ca<sup>2+</sup>-dependent transcription factors as nuclear factor of activated T cells (NFAT) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Furthermore, LIPUS stimulation induced the activation of the serine/threonine kinase protein kinase B (AKT). Thus, LIPUS stimulation prevented oxidative/ER stress–mediated mitochondrial dysfunction. In conclusion, as a safe and noninvasive method, LIPUS stimulation can facilitate further development of ultrasound neuromodulation as a tool for neuroscience research.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107499"},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.ultras.2024.107491
Sander Bøe Thygesen , Tore Lie Sirevaag , Sven Peter Näsholm
Safe oil and gas well operations require appropriate sealing of the annulus casing. Pitch-catch ultrasound logging measurements can be used for well-barrier inspection. In the analysis of such data, an important aspect is to determine whether there is cement or mud behind the casing.
This paper presents a data processing approach to differentiate between fluid and solid behind the casing from pitch-catch datasets. It is based on the spectral signature of the casing flexural wave, in which a notch-like dip might be observed. This dip is understood to occur in most solid annulus scenarios. However, when the annulus velocity exceeds a certain limit or is below a threshold, a dip is not produced. The frequency where the dip occurs is associated with an overlap between the flexural phase-velocity and the annulus P-wave velocity. This is exploited by picking the notch frequency, and then its value is used to estimate the annulus material P-wave velocity.
On the basis of this insight, a method for distinguishing solids from fluids is presented. The outcome is a binary algorithm that detects a dip (or no dip), and which in addition differentiates between annulus materials using the estimated velocity. In addition, we analyze the accuracy of the velocity estimation. It is straightforward to adopt this in an operational setting. This paper demonstrates the performance and accuracy of the algorithm for both simulated data and field recordings.
油气井的安全作业要求对环形套管进行适当的密封。间距捕捉超声波测井测量可用于井障检查。在分析此类数据时,一个重要的方面是确定套管后面是水泥还是泥浆。本文介绍了一种数据处理方法,用于从螺距捕捉数据集中区分套管后的流体和固体。该方法基于套管挠曲波的频谱特征,其中可能会观察到类似凹槽的倾角。据了解,在大多数固体环空情况下都会出现这种凹陷。然而,当环空速度超过一定限度或低于阈值时,就不会产生凹陷。出现凹陷的频率与挠曲相速度和环面 P 波速度之间的重叠有关。利用这一点,我们可以选取陷波频率,然后用其值来估算环面材料的 P 波速度。在此基础上,提出了一种区分固体和流体的方法。该方法是一种二进制算法,可检测凹陷(或无凹陷),并利用估算的速度区分环状材料。此外,我们还分析了速度估算的准确性。这种算法可以直接应用于实际工作中。本文展示了该算法在模拟数据和现场记录方面的性能和准确性。
{"title":"Estimating annulus sealing properties using the flexural wave spectrum in pitch-catch well-logging","authors":"Sander Bøe Thygesen , Tore Lie Sirevaag , Sven Peter Näsholm","doi":"10.1016/j.ultras.2024.107491","DOIUrl":"10.1016/j.ultras.2024.107491","url":null,"abstract":"<div><div>Safe oil and gas well operations require appropriate sealing of the annulus casing. Pitch-catch ultrasound logging measurements can be used for well-barrier inspection. In the analysis of such data, an important aspect is to determine whether there is cement or mud behind the casing.</div><div>This paper presents a data processing approach to differentiate between fluid and solid behind the casing from pitch-catch datasets. It is based on the spectral signature of the casing flexural wave, in which a notch-like dip might be observed. This dip is understood to occur in most solid annulus scenarios. However, when the annulus velocity exceeds a certain limit or is below a threshold, a dip is not produced. The frequency where the dip occurs is associated with an overlap between the flexural phase-velocity and the annulus P-wave velocity. This is exploited by picking the notch frequency, and then its value is used to estimate the annulus material P-wave velocity.</div><div>On the basis of this insight, a method for distinguishing solids from fluids is presented. The outcome is a binary algorithm that detects a dip (or no dip), and which in addition differentiates between annulus materials using the estimated velocity. In addition, we analyze the accuracy of the velocity estimation. It is straightforward to adopt this in an operational setting. This paper demonstrates the performance and accuracy of the algorithm for both simulated data and field recordings.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107491"},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.ultras.2024.107498
Zhun Xie , Jiaqi Han , Nan Ji , Lijun Xu , Jianguo Ma
Computer-aided segmentation of medical ultrasound images assists in medical diagnosis, promoting accuracy and reducing the burden of sonographers. However, the existing ultrasonic intelligent segmentation models are mainly based on B-mode grayscale images, which lack sufficient clarity and contrast compared to natural images. Previous research has indicated that ultrasound radiofrequency (RF) signals contain rich spectral information that could be beneficial for tissue recognition but is lost in grayscale images. In this paper, we introduce an image segmentation framework, RFImageNet, that leverages spectral and amplitude information from RF signals to segment ultrasound image. Firstly, the positive and negative values in the RF signal are separated into the red and green channels respectively in the proposed RF image, ensuring the preservation of frequency information. Secondly, we developed a deep learning model, RFNet, tailored to the specific input image size requirements. Thirdly, RFNet was trained using RF images with spectral data augmentation and tested against other models. The proposed method achieved a mean intersection over union (mIoU) of 54.99% and a dice score of 63.89% in the segmentation of rat abdominal tissues, as well as a mIoU of 63.28% and a dice score of 68.92% in distinguishing between benign and malignant breast tumors. These results highlight the potential of combining RF signals with deep learning algorithms for enhanced diagnostic capabilities.
{"title":"RFImageNet framework for segmentation of ultrasound images with spectra-augmented radiofrequency signals","authors":"Zhun Xie , Jiaqi Han , Nan Ji , Lijun Xu , Jianguo Ma","doi":"10.1016/j.ultras.2024.107498","DOIUrl":"10.1016/j.ultras.2024.107498","url":null,"abstract":"<div><div>Computer-aided segmentation of medical ultrasound images assists in medical diagnosis, promoting accuracy and reducing the burden of sonographers. However, the existing ultrasonic intelligent segmentation models are mainly based on B-mode grayscale images, which lack sufficient clarity and contrast compared to natural images. Previous research has indicated that ultrasound radiofrequency (RF) signals contain rich spectral information that could be beneficial for tissue recognition but is lost in grayscale images. In this paper, we introduce an image segmentation framework, RFImageNet, that leverages spectral and amplitude information from RF signals to segment ultrasound image. Firstly, the positive and negative values in the RF signal are separated into the red and green channels respectively in the proposed RF image, ensuring the preservation of frequency information. Secondly, we developed a deep learning model, RFNet, tailored to the specific input image size requirements. Thirdly, RFNet was trained using RF images with spectral data augmentation and tested against other models. The proposed method achieved a mean intersection over union (mIoU) of 54.99% and a dice score of 63.89% in the segmentation of rat abdominal tissues, as well as a mIoU of 63.28% and a dice score of 68.92% in distinguishing between benign and malignant breast tumors. These results highlight the potential of combining RF signals with deep learning algorithms for enhanced diagnostic capabilities.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107498"},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}