首页 > 最新文献

Ultrasonics最新文献

英文 中文
Lamb wave imaging via dual-frequency fusion for grating lobe effect compensation 通过双频融合进行光栅叶效应补偿的 Lamb 波成像。
IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Pub Date : 2024-11-13 DOI: 10.1016/j.ultras.2024.107512
Xuelian Gao , Tingxuan Yang , Dan Li, Yanyan Fang, Jianqiu Zhang, Dean Ta
In Lamb wave imaging based on a phased array, higher frequencies narrowband excitation pulses enable more precise damage detection and localization. However, due to the size constraints of individual transducer elements, the spacing between array elements may exceed half the wavelength of the excitation signal. This can lead to a grating lobe effect. To overcome this limitation, a Lamb wave imaging method via dual-frequency fusion for grating lobe effect compensation is proposed in this study. Analyses indicate that the grating lobe effect may introduce artifacts or distortions in the imaging results. This method utilizes two frequencies of narrowband excitation pulses for imaging and subsequently fuses the results. By doing so, the imaging artifacts caused by the grating lobes produced by high-frequency narrowband excitation pulses are effectively compensated. The proposed method is validated through simulations and experiments on an aluminum plate, showing superior accuracy, contrast, and imaging quality.
在基于相控阵的兰姆波成像中,高频窄带激励脉冲可实现更精确的损伤检测和定位。然而,由于单个传感器元件的尺寸限制,阵列元件之间的间距可能会超过激励信号波长的一半。这会导致光栅叶效应。为了克服这一限制,本研究提出了一种通过双频融合补偿光栅叶效应的兰姆波成像方法。分析表明,光栅叶效应可能会给成像结果带来伪影或失真。这种方法利用两种频率的窄带激励脉冲进行成像,然后将结果融合。通过这种方法,高频窄带激励脉冲产生的光栅叶引起的成像伪影得到了有效补偿。通过在铝板上进行模拟和实验,对所提出的方法进行了验证,结果表明该方法在精度、对比度和成像质量方面都非常出色。
{"title":"Lamb wave imaging via dual-frequency fusion for grating lobe effect compensation","authors":"Xuelian Gao ,&nbsp;Tingxuan Yang ,&nbsp;Dan Li,&nbsp;Yanyan Fang,&nbsp;Jianqiu Zhang,&nbsp;Dean Ta","doi":"10.1016/j.ultras.2024.107512","DOIUrl":"10.1016/j.ultras.2024.107512","url":null,"abstract":"<div><div>In Lamb wave imaging based on a phased array, higher frequencies narrowband excitation pulses enable more precise damage detection and localization. However, due to the size constraints of individual transducer elements, the spacing between array elements may exceed half the wavelength of the excitation signal. This can lead to a grating lobe effect. To overcome this limitation, a Lamb wave imaging method via dual-frequency fusion for grating lobe effect compensation is proposed in this study. Analyses indicate that the grating lobe effect may introduce artifacts or distortions in the imaging results. This method utilizes two frequencies of narrowband excitation pulses for imaging and subsequently fuses the results. By doing so, the imaging artifacts caused by the grating lobes produced by high-frequency narrowband excitation pulses are effectively compensated. The proposed method is validated through simulations and experiments on an aluminum plate, showing superior accuracy, contrast, and imaging quality.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107512"},"PeriodicalIF":3.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the signal-to-noise ratio of the laser ultrasonic synthetic aperture focusing technique to detect submillimeter internal defects using echo array similarity 利用回波阵列相似性提高激光超声合成孔径聚焦技术的信噪比,以探测亚毫米级内部缺陷。
IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Pub Date : 2024-11-09 DOI: 10.1016/j.ultras.2024.107513
Huabin He, Jianguo He, Zhihui Xia, Kaihua Sun, Chao Wang, Qian Liu
Laser ultrasonic imaging is a promising technique for structural health monitoring because it is noncontact and nondestructive. However, this technique will only find more industrial applications if it has a high signal-to-noise ratio (SNR) and short data acquisition time. In existing delay-and-sum algorithms, such as the synthetic aperture focusing technique (SAFT) and the total focusing method, a higher SNR requires more A-scan signals, which mean a longer data acquisition time. It is difficult for these algorithms to consider these two aspects simultaneously. Thus, in this study, we propose a post-processing algorithm that extracts neglected information from laser ultrasonic B-scan data to improve the SNR of the SAFT without increasing the data acquisition time. The SNR was increased by multiplying the SAFT image intensity with the echo array similarity defined using the directivity and echo shape information of laser ultrasound. In experiments, SNR was increased from 4.1 dB to 31.3 dB for two submillimeter defects having a diameter of 0.5 mm and depth of 15 mm. Deeper defects can be detected because of the improved SNR. In this study, two submillimeter defects with a depth of 30 mm were detected. Compared with existing delay-and-sum algorithms, the proposed algorithm performs well in terms of both SNR and data acquisition time, which can promote its use in more industrial applications.
激光超声波成像技术具有非接触和无损的特点,是一种很有前途的结构健康监测技术。然而,只有在信噪比(SNR)高和数据采集时间短的情况下,这种技术才能得到更多的工业应用。在现有的延迟和算法中,如合成孔径聚焦技术(SAFT)和全聚焦法,较高的信噪比需要更多的 A 扫描信号,这意味着较长的数据采集时间。这些算法很难同时考虑这两个方面。因此,在本研究中,我们提出了一种后处理算法,从激光超声 B 扫描数据中提取被忽略的信息,在不增加数据采集时间的情况下提高 SAFT 的信噪比。利用激光超声的指向性和回波形状信息定义的回波阵列相似度乘以 SAFT 图像强度,从而提高信噪比。在实验中,对于两个直径为 0.5 毫米、深度为 15 毫米的亚毫米缺陷,信噪比从 4.1 分贝提高到 31.3 分贝。由于信噪比的提高,可以检测到更深的缺陷。在这项研究中,检测到了两个深度为 30 毫米的亚毫米缺陷。与现有的延迟求和算法相比,所提出的算法在信噪比和数据采集时间方面都有很好的表现,可以促进其在更多工业应用中的使用。
{"title":"Improving the signal-to-noise ratio of the laser ultrasonic synthetic aperture focusing technique to detect submillimeter internal defects using echo array similarity","authors":"Huabin He,&nbsp;Jianguo He,&nbsp;Zhihui Xia,&nbsp;Kaihua Sun,&nbsp;Chao Wang,&nbsp;Qian Liu","doi":"10.1016/j.ultras.2024.107513","DOIUrl":"10.1016/j.ultras.2024.107513","url":null,"abstract":"<div><div>Laser ultrasonic imaging is a promising technique for structural health monitoring because it is noncontact and nondestructive. However, this technique will only find more industrial applications if it has a high signal-to-noise ratio (SNR) and short data acquisition time. In existing delay-and-sum algorithms, such as the synthetic aperture focusing technique (SAFT) and the total focusing method, a higher SNR requires more A-scan signals, which mean a longer data acquisition time. It is difficult for these algorithms to consider these two aspects simultaneously. Thus, in this study, we propose a post-processing algorithm that extracts neglected information from laser ultrasonic B-scan data to improve the SNR of the SAFT without increasing the data acquisition time. The SNR was increased by multiplying the SAFT image intensity with the echo array similarity defined using the directivity and echo shape information of laser ultrasound. In experiments, SNR was increased from 4.1 dB to 31.3 dB for two submillimeter defects having a diameter of 0.5 mm and depth of 15 mm. Deeper defects can be detected because of the improved SNR. In this study, two submillimeter defects with a depth of 30 mm were detected. Compared with existing delay-and-sum algorithms, the proposed algorithm performs well in terms of both SNR and data acquisition time, which can promote its use in more industrial applications.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107513"},"PeriodicalIF":3.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the second-harmonic focused ultrasonic device based on micro-bubble contrast agents 基于微气泡造影剂的二次谐波聚焦超声装置研究。
IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Pub Date : 2024-11-09 DOI: 10.1016/j.ultras.2024.107514
Qinglei Zeng , Yuetongxu Li , Zhaoyu Deng , Gutian Zhang , Chengwei Zhang , Haifeng Huang , Xiaozhou Liu
Non-invasive, accurate diagnosis and treatment have increasingly gained attention in medical research. The nonlinear response mechanism of ultrasound contrast agents and their medical application have become major topics in ultrasound imaging studies. This paper reports on a second-harmonic focused ultrasonic device based on micro-bubble contrast agents, which is designed to solve the problems associated with a weak second-harmonic intensity. A periodic array of circular holes is embedded in the center of a specifically shaped resin plate, and contrast agents are encapsulated in the circular holes using thin resin tape. The functional mechanism is theoretically explained and experimentally verified. This device enables second-harmonic ultrasound imaging with a higher ultrasonic lateral resolution and signal-to-noise ratio than the conventional system without the device.
无创、准确的诊断和治疗越来越受到医学研究的关注。超声造影剂的非线性响应机制及其医学应用已成为超声成像研究的主要课题。本文报告了一种基于微气泡造影剂的二次谐波聚焦超声装置,旨在解决二次谐波强度较弱的相关问题。在特定形状的树脂板中心嵌入了周期性的圆孔阵列,并使用薄树脂带将造影剂封装在圆孔中。该装置的功能机制得到了理论解释和实验验证。与不使用该装置的传统系统相比,该装置能以更高的超声横向分辨率和信噪比进行二次谐波超声成像。
{"title":"Research on the second-harmonic focused ultrasonic device based on micro-bubble contrast agents","authors":"Qinglei Zeng ,&nbsp;Yuetongxu Li ,&nbsp;Zhaoyu Deng ,&nbsp;Gutian Zhang ,&nbsp;Chengwei Zhang ,&nbsp;Haifeng Huang ,&nbsp;Xiaozhou Liu","doi":"10.1016/j.ultras.2024.107514","DOIUrl":"10.1016/j.ultras.2024.107514","url":null,"abstract":"<div><div>Non-invasive, accurate diagnosis and treatment have increasingly gained attention in medical research. The nonlinear response mechanism of ultrasound contrast agents and their medical application have become major topics in ultrasound imaging studies. This paper reports on a second-harmonic focused ultrasonic device based on micro-bubble contrast agents, which is designed to solve the problems associated with a weak second-harmonic intensity. A periodic array of circular holes is embedded in the center of a specifically shaped resin plate, and contrast agents are encapsulated in the circular holes using thin resin tape. The functional mechanism is theoretically explained and experimentally verified. This device enables second-harmonic ultrasound imaging with a higher ultrasonic lateral resolution and signal-to-noise ratio than the conventional system without the device.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107514"},"PeriodicalIF":3.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of broadband airborne ultrasound using an Harmonic Acoustic Pneumatic Source 利用谐波声气动源产生宽带空中超声波。
IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Pub Date : 2024-11-08 DOI: 10.1016/j.ultras.2024.107494
Romain Rousseau, Pierre Grandjean, Nicolas Quaegebeur, Loïc Charlebois-Vachon, Philippe Micheau
This paper presents a new type of airborne transducer for generating broadband ultrasound with a high Sound Pressure Level (SPL). The concept is based on the Harmonic Acoustic Pneumatic Source (HAPS) that uses pressurized air in conjunction with a flow chopper made up of a rotating cage with slots connected to a specific exhaust. The fundamental frequency depends on the number of slots and the rotation speed of the cage. An analytical model of the HAPS coupled with a numerical model of the exhaust is used to predict the radiated acoustic pressure and to estimate the influence of dimensional parameters on pressure level generated by the source. Experiments are conducted with two cages: one with one slot in order to generate pulses periodically and one with 122 slots to generate periodic sound. The level of sound pressure is measured as a function of distance (0.004 to 0.5 m), the cage rotation (up to 11 krpm) and directivity (0 to 90°). For the fundamental frequency at 22 kHz, the maximum SPL of 150 dB (632 Pa rms) is /measured at 0.004 m, and decreases to 122 dB (35 Pa rms) at 0.5 m. At 0.5 m, the second and third harmonics can generate a SPL equal or greater than 115 dB above 22 kHz and up to 66 kHz. Discrepancies between the experiments results and numerical model are observed in terms of SPL, directivity and in-axis pressure.
本文介绍了一种用于产生高声压级(SPL)宽带超声波的新型机载换能器。该概念基于谐波声学气动源(HAPS),它使用加压空气与由旋转笼组成的斩流器,旋转笼上的槽与特定的排气管相连。基频取决于槽的数量和笼子的旋转速度。HAPS 的分析模型与排气的数值模型相结合,用于预测辐射声压,并估算尺寸参数对声源产生的压力水平的影响。实验使用了两个笼子:一个带有一个槽,用于产生周期性脉冲;另一个带有 122 个槽,用于产生周期性声音。测量的声压级是距离(0.004 至 0.5 米)、笼子旋转(最高 11 千转/分)和指向性(0 至 90°)的函数。对于 22 kHz 的基频,在 0.004 m 处测得的最大声压级为 150 dB(632 Pa rms),在 0.5 m 处降至 122 dB(35 Pa rms)。实验结果与数值模型在声压级、指向性和轴内压力方面存在差异。
{"title":"Generation of broadband airborne ultrasound using an Harmonic Acoustic Pneumatic Source","authors":"Romain Rousseau,&nbsp;Pierre Grandjean,&nbsp;Nicolas Quaegebeur,&nbsp;Loïc Charlebois-Vachon,&nbsp;Philippe Micheau","doi":"10.1016/j.ultras.2024.107494","DOIUrl":"10.1016/j.ultras.2024.107494","url":null,"abstract":"<div><div>This paper presents a new type of airborne transducer for generating broadband ultrasound with a high Sound Pressure Level (SPL). The concept is based on the Harmonic Acoustic Pneumatic Source (HAPS) that uses pressurized air in conjunction with a flow chopper made up of a rotating cage with slots connected to a specific exhaust. The fundamental frequency depends on the number of slots and the rotation speed of the cage. An analytical model of the HAPS coupled with a numerical model of the exhaust is used to predict the radiated acoustic pressure and to estimate the influence of dimensional parameters on pressure level generated by the source. Experiments are conducted with two cages: one with one slot in order to generate pulses periodically and one with <span><math><mrow><mn>122</mn></mrow></math></span> slots to generate periodic sound. The level of sound pressure is measured as a function of distance (<span><math><mrow><mn>0</mn><mo>.</mo><mn>004</mn></mrow></math></span> to <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m), the cage rotation (up to <span><math><mrow><mn>11</mn></mrow></math></span> krpm) and directivity (<span><math><mn>0</mn></math></span> to <span><math><mrow><mn>90</mn></mrow></math></span>°). For the fundamental frequency at <span><math><mrow><mn>22</mn></mrow></math></span> kHz, the maximum SPL of <span><math><mrow><mn>150</mn></mrow></math></span> dB (<span><math><mrow><mn>632</mn></mrow></math></span> Pa rms) is /measured at <span><math><mrow><mn>0</mn><mo>.</mo><mn>004</mn></mrow></math></span> m, and decreases to <span><math><mrow><mn>122</mn></mrow></math></span> dB (<span><math><mrow><mn>35</mn></mrow></math></span> Pa rms) at <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m. At <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m, the second and third harmonics can generate a SPL equal or greater than <span><math><mrow><mn>115</mn></mrow></math></span> dB above <span><math><mrow><mn>22</mn></mrow></math></span> kHz and up to <span><math><mrow><mn>66</mn></mrow></math></span> kHz. Discrepancies between the experiments results and numerical model are observed in terms of SPL, directivity and in-axis pressure.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107494"},"PeriodicalIF":3.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast laser-enabled optoacoustic characterization of three-dimensional, nanoscopic interior features of microchips 利用超快激光对微型芯片的三维纳米内部特征进行光声表征。
IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Pub Date : 2024-11-06 DOI: 10.1016/j.ultras.2024.107510
Yi He , Guojie Luo , Jie Huang , Yehai Li , Hoon Sohn , Zhongqing Su
The recent advances in micromanufacturing have been pushing boundaries of the new generation of semiconductor devices, which, in the meantime, brings new challenges in the material and structural characterization – a key step to ensure the device quality through the micromanufacturing process. An ultrafast laser-enable optoacoustic characterization methodology is developed, targeting in situ calibration and delineation of the three-dimensional (3-D), nanoscopic interior features of opaque semiconductor chips. With the guidance of ultrafast electron–phonon coupling effect and velocity-perturbated optical interference, a femtosecond-laser pump–probe set-up based on Sagnac interferometer is configured to generate and acquire picosecond ultrasonic bulk waves (P-UBWs) traversing the microchips. The interior features of the microchips shift the phase of acquired P-UBW signals, reflected in the perturbed probe laser beam. The phase shifts are calibrated to compute signal correlation of P-UBW signals between different acquiring positions, whereby to delineate the interior features in an intuitive manner. The approach is experimentally validated by characterizing nanoscopic, invisible interior aurum(Au)-gratings with periodically varied depths in typical microchips. Results highlight that the 3-D nanoscopic features of the microchips can be revealed with a microscopic and a nanoscopic spatial resolution, respectively along the transverse and depth directions of the chip, where the Au-gratings become “visible” with a depth variance of a few tens of nanometers only. This proposed approach has provided a fast, nondestructive approach to “see” through an opaque microchip with a nanoscopic resolution.
微制造技术的最新进展推动了新一代半导体器件的发展,同时也给材料和结构表征带来了新的挑战,而材料和结构表征是通过微制造过程确保器件质量的关键步骤。针对不透明半导体芯片的三维(3-D)、纳米级内部特征的现场校准和划分,我们开发了一种超快激光光声表征方法。在超快电子-声子耦合效应和速度扰动光学干涉的指导下,基于萨格纳克干涉仪的飞秒激光泵浦-探针装置被配置用来产生和获取穿越微芯片的皮秒超声波(P-UBW)。微芯片的内部特征会移动所获取的 P-UBW 信号的相位,并反射到扰动探针激光束中。对相移进行校准,计算不同采集位置之间 P-UBW 信号的相关性,从而以直观的方式划分内部特征。通过对典型微芯片中深度周期性变化的纳米级不可见内部金(Au)光栅进行表征,对该方法进行了实验验证。结果表明,微芯片的三维纳米特征可以在芯片的横向和纵向分别以微米级和纳米级的空间分辨率显示出来,其中金槽的 "可见 "深度差异仅为几十纳米。这种拟议的方法提供了一种快速、无损的方法,能以纳米分辨率 "看透 "不透明的微芯片。
{"title":"Ultrafast laser-enabled optoacoustic characterization of three-dimensional, nanoscopic interior features of microchips","authors":"Yi He ,&nbsp;Guojie Luo ,&nbsp;Jie Huang ,&nbsp;Yehai Li ,&nbsp;Hoon Sohn ,&nbsp;Zhongqing Su","doi":"10.1016/j.ultras.2024.107510","DOIUrl":"10.1016/j.ultras.2024.107510","url":null,"abstract":"<div><div>The recent advances in micromanufacturing have been pushing boundaries of the new generation of semiconductor devices, which, in the meantime, brings new challenges in the material and structural characterization – a key step to ensure the device quality through the micromanufacturing process. An ultrafast laser-enable optoacoustic characterization methodology is developed, targeting <em>in situ</em> calibration and delineation of the three-dimensional (3-D), nanoscopic interior features of opaque semiconductor chips. With the guidance of ultrafast electron–phonon coupling effect and velocity-perturbated optical interference, a femtosecond-laser pump–probe set-up based on Sagnac interferometer is configured to generate and acquire picosecond ultrasonic bulk waves (P-UBWs) traversing the microchips. The interior features of the microchips shift the phase of acquired P-UBW signals, reflected in the perturbed probe laser beam. The phase shifts are calibrated to compute signal correlation of P-UBW signals between different acquiring positions, whereby to delineate the interior features in an intuitive manner. The approach is experimentally validated by characterizing nanoscopic, invisible interior aurum(Au)-gratings with periodically varied depths in typical microchips. Results highlight that the 3-D nanoscopic features of the microchips can be revealed with a microscopic and a nanoscopic spatial resolution, respectively along the transverse and depth directions of the chip, where the Au-gratings become “visible” with a depth variance of a few tens of nanometers only. This proposed approach has provided a fast, nondestructive approach to “see” through an opaque microchip with a nanoscopic resolution.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107510"},"PeriodicalIF":3.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An algorithm for multi-damage size estimation of composite laminates 复合材料层压板多损伤尺寸估算算法。
IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Pub Date : 2024-11-05 DOI: 10.1016/j.ultras.2024.107511
Zhongyan Jin , Qihong Zhou , Zeguang Pei , Ge Chen
Localization and size estimation of composite damage are challenging but essential for composite performance evaluation. This paper proposes a new methodology for the size estimation of multi-damage in composite laminates using Lamb wave technology. The pure A0 modal of Lamb wave is excited to avoid dispersion and multi-modal effects of Lamb wave. An extraction algorithm is introduced to obtain the first wave packet and time-of-flight. According to the results obtained by the extraction algorithm, the Bayesian-hybrid localization algorithm based on the reconstruction algorithm for probabilistic inspection of damage and modified delay-and-sum (MDAS) is performed to localize damages. The damage boundaries are obtained through convex enveloping a series of damage boundary points identified by MDAS. An adaptive Gaussian mixture model based on Akaike’s Information Criterion and Bayesian Information Criterion is designed to remove abnormal boundary points. The proposed method is numerically investigated and validated through multi-damage experiments. The results demonstrate that it can accurately estimate the locations and boundaries of multi-damage in composite laminates.
复合材料损伤的定位和尺寸估算具有挑战性,但对复合材料性能评估至关重要。本文提出了一种利用 Lamb 波技术估算复合材料层压板多损伤尺寸的新方法。本文激发了纯 A0 模态的 Lamb 波,以避免 Lamb 波的色散和多模态效应。引入了一种提取算法来获取第一波包和飞行时间。根据提取算法得到的结果,采用基于损伤概率检测重构算法和修正延迟和(MDAS)的贝叶斯混合定位算法对损伤进行定位。通过凸包络 MDAS 确定的一系列损伤边界点,获得损伤边界。设计了一种基于 Akaike 信息准则和贝叶斯信息准则的自适应高斯混合模型,以去除异常边界点。通过多损伤实验对所提出的方法进行了数值研究和验证。结果表明,该方法能准确估计复合材料层压板中多重损伤的位置和边界。
{"title":"An algorithm for multi-damage size estimation of composite laminates","authors":"Zhongyan Jin ,&nbsp;Qihong Zhou ,&nbsp;Zeguang Pei ,&nbsp;Ge Chen","doi":"10.1016/j.ultras.2024.107511","DOIUrl":"10.1016/j.ultras.2024.107511","url":null,"abstract":"<div><div>Localization and size estimation of composite damage are challenging but essential for composite performance evaluation. This paper proposes a new methodology for the size estimation of multi-damage in composite laminates using Lamb wave technology. The pure A<sub>0</sub> modal of Lamb wave is excited to avoid dispersion and multi-modal effects of Lamb wave. An extraction algorithm is introduced to obtain the first wave packet and time-of-flight. According to the results obtained by the extraction algorithm, the Bayesian-hybrid localization algorithm based on the reconstruction algorithm for probabilistic inspection of damage and modified delay-and-sum (MDAS) is performed to localize damages. The damage boundaries are obtained through convex enveloping a series of damage boundary points identified by MDAS. An adaptive Gaussian mixture model based on Akaike’s Information Criterion and Bayesian Information Criterion is designed to remove abnormal boundary points. The proposed method is numerically investigated and validated through multi-damage experiments. The results demonstrate that it can accurately estimate the locations and boundaries of multi-damage in composite laminates.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107511"},"PeriodicalIF":3.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Band edge modulation for high-performance LL-SAW resonators on LiNbO3/SiC by introducing an ultra-thin intermediate oxide layer 通过引入超薄中间氧化物层,在 LiNbO3/SiC 上实现高性能 LL-SAW 谐振器的带边调制。
IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Pub Date : 2024-11-04 DOI: 10.1016/j.ultras.2024.107508
Juxing He , Shibin Zhang , Pengcheng Zheng , Xiaoli Fang , Hulin Yao , Mijing Sun , Dongchen Sui , Yanlong Yao , Chongxi Song , Zheng Zhou , Xin Ou
With the exploding demand of rapid information transmission, high-frequency acoustic filtering devices are becoming an immediate need. Longitudinal leaky surface acoustic wave (LL-SAW) devices with unique advantages can be a promising platform. In this paper, we introduce a 100 nm intermediate oxide layer into the X-cut lithium niobate on silicon carbide (LiNbO3/SiC) to improve the in-band performance of LL-SAW resonators. First, the dispersion curves of the structures are analyzed by finite element method. In this part, we successfully interpret the intrinsic low quality factor (Q) of LL-SAW on LiNbO3/SiC in general design, and predict the enhancement of Q by introducing an intermediate oxide layer without degradation on spurious response. Then, one port resonators considered in the simulation are fabricated and measured. As a result, enhancements in Bode Q among the whole passband are confirmed. Compared with devices state of art, resonators with leading performances are demonstrated. The fabricated resonators have peak-valley admittance ratio of 63.87 dB, Bode Q of ∼300 at fr and ∼530 at far, keff2of 15.66 % and phase velocity of 6187.3 m/s. Additionally, the resonant frequency of SH1 mode shifts to higher frequency. This work enables the design of next generation high frequency mobile communication filters.
随着快速信息传输需求的不断增长,高频声学滤波设备已成为当务之急。具有独特优势的纵向泄漏表面声波(LL-SAW)器件是一个前景广阔的平台。本文在 X 切碳化硅铌酸锂(LiNbO3/SiC)中引入了 100 nm 的中间氧化层,以改善 LL-SAW 谐振器的带内性能。首先,我们用有限元法分析了结构的色散曲线。在这一部分,我们成功地解释了在一般设计中,LiNbO3/SiC 上的 LL-SAW 固有的低品质因数(Q),并预测了通过引入中间氧化物层来增强 Q 值,而不会降低杂散响应。然后,制作并测量了模拟中考虑的单端口谐振器。结果证实,整个通带的 Bode Q 值都有所提高。与现有器件相比,谐振器的性能处于领先地位。所制作的谐振器的峰谷导纳比为 63.87 dB,远近端 Bode Q 值分别为 ∼300 和 ∼530,keff2 为 15.66 %,相位速度为 6187.3 m/s。此外,SH1 模式的共振频率也变高了。这项工作有助于设计下一代高频移动通信滤波器。
{"title":"Band edge modulation for high-performance LL-SAW resonators on LiNbO3/SiC by introducing an ultra-thin intermediate oxide layer","authors":"Juxing He ,&nbsp;Shibin Zhang ,&nbsp;Pengcheng Zheng ,&nbsp;Xiaoli Fang ,&nbsp;Hulin Yao ,&nbsp;Mijing Sun ,&nbsp;Dongchen Sui ,&nbsp;Yanlong Yao ,&nbsp;Chongxi Song ,&nbsp;Zheng Zhou ,&nbsp;Xin Ou","doi":"10.1016/j.ultras.2024.107508","DOIUrl":"10.1016/j.ultras.2024.107508","url":null,"abstract":"<div><div>With the exploding demand of rapid information transmission, high-frequency acoustic filtering devices are becoming an immediate need. Longitudinal leaky surface acoustic wave (LL-SAW) devices with unique advantages can be a promising platform. In this paper, we introduce a 100 nm intermediate oxide layer into the X-cut lithium niobate on silicon carbide (LiNbO<sub>3</sub>/SiC) to improve the in-band performance of LL-SAW resonators. First, the dispersion curves of the structures are analyzed by finite element method. In this part, we successfully interpret the intrinsic low quality factor (<em>Q</em>) of LL-SAW on LiNbO<sub>3</sub>/SiC in general design, and predict the enhancement of <em>Q</em> by introducing an intermediate oxide layer without degradation on spurious response. Then, one port resonators considered in the simulation are fabricated and measured. As a result, enhancements in <em>Bode Q</em> among the whole passband are confirmed. Compared with devices state of art, resonators with leading performances are demonstrated. The fabricated resonators have peak-valley admittance ratio of 63.87 dB, <em>Bode Q</em> of ∼300 at <em>f<sub>r</sub></em> and ∼530 at <em>f<sub>ar</sub></em>, <span><math><mrow><msubsup><mtext>k</mtext><mrow><mtext>eff</mtext></mrow><mtext>2</mtext></msubsup><mspace></mspace><mtext>of</mtext></mrow></math></span> 15.66 % and phase velocity of 6187.3 m/s. Additionally, the resonant frequency of SH1 mode shifts to higher frequency. This work enables the design of next generation high frequency mobile communication filters.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107508"},"PeriodicalIF":3.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-intensity pulsed ultrasound reduces oxidative and endoplasmic reticulum stress in motor neuron cells 低强度脉冲超声可降低运动神经细胞的氧化应激和内质网应激。
IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Pub Date : 2024-10-28 DOI: 10.1016/j.ultras.2024.107499
Thi-Thuyet Truong , Chih-Chung Huang , Wen-Tai Chiu
Endoplasmic reticulum (ER) stress is associated with oxidative stress, which is integral to the development of various pathological conditions, including neurodegenerative disorders. In this study, using NSC-34-a hybrid cell line established by fusing motor neuron–rich embryonic spinal cord cells with mouse neuroblastoma cells-we investigated the effects of low-intensity pulsed ultrasound (LIPUS) stimulation on oxidative (reactive oxygen species)/ER stress-induced neurodegeneration. An ultrasound transducer with a center frequency of 1.15 MHz and a spatial peak temporal average intensity of 357 mW/cm2 was used for delivering ultrasound (for 8 min, via a water-filled tube) to motor neuron cells seeded in a plastic culture dish. LIPUS stimulation significantly increased the level of the antiapoptotic protein B-cell lymphoma 2 (BCL-2) and inhibited the expression of apoptosis-associated proteins such as BCL-2-associated X protein (BAX), CCAAT/enhancer-binding protein-homologous protein (CHOP), and caspase-12, thus extending the survival of motor neurons. LIPUS stimulation also enhanced Ca2+ signaling and activated the Ca2+-dependent transcription factors as nuclear factor of activated T cells (NFAT) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Furthermore, LIPUS stimulation induced the activation of the serine/threonine kinase protein kinase B (AKT). Thus, LIPUS stimulation prevented oxidative/ER stress–mediated mitochondrial dysfunction. In conclusion, as a safe and noninvasive method, LIPUS stimulation can facilitate further development of ultrasound neuromodulation as a tool for neuroscience research.
内质网(ER)应激与氧化应激有关,而氧化应激与包括神经退行性疾病在内的各种病理状况的发展密不可分。本研究利用NSC-34--一种由富含运动神经元的胚胎脊髓细胞与小鼠神经母细胞瘤细胞融合而成的杂交细胞系--研究了低强度脉冲超声(LIPUS)刺激对氧化(活性氧)/ER应激诱导的神经退行性病变的影响。使用中心频率为 1.15 MHz、空间峰值时间平均强度为 357 mW/cm2 的超声换能器向塑料培养皿中播种的运动神经元细胞发射超声波(持续 8 分钟,通过注水管)。LIPUS刺激能明显提高抗凋亡蛋白B细胞淋巴瘤2(BCL-2)的水平,抑制BCL-2相关X蛋白(BAX)、CCAAT/增强子结合蛋白同源蛋白(CHOP)和caspase-12等凋亡相关蛋白的表达,从而延长运动神经元的存活时间。LIPUS 刺激还增强了 Ca2+ 信号传导,激活了 Ca2+ 依赖性转录因子,如活化 T 细胞核因子(NFAT)和活化 B 细胞核因子卡巴轻链增强因子(NF-κB)。此外,LIPUS 还能诱导丝氨酸/苏氨酸激酶蛋白激酶 B(AKT)的活化。因此,刺激 LIPUS 可防止氧化/ER 应激介导的线粒体功能障碍。总之,作为一种安全无创的方法,LIPUS 刺激可促进超声神经调控作为神经科学研究工具的进一步发展。
{"title":"Low-intensity pulsed ultrasound reduces oxidative and endoplasmic reticulum stress in motor neuron cells","authors":"Thi-Thuyet Truong ,&nbsp;Chih-Chung Huang ,&nbsp;Wen-Tai Chiu","doi":"10.1016/j.ultras.2024.107499","DOIUrl":"10.1016/j.ultras.2024.107499","url":null,"abstract":"<div><div>Endoplasmic reticulum (ER) stress is associated with oxidative stress, which is integral to the development of various pathological conditions, including neurodegenerative disorders. In this study, using NSC-34-a hybrid cell line established by fusing motor neuron–rich embryonic spinal cord cells with mouse neuroblastoma cells-we investigated the effects of low-intensity pulsed ultrasound (LIPUS) stimulation on oxidative (reactive oxygen species)/ER stress-induced neurodegeneration. An ultrasound transducer with a center frequency of 1.15 MHz and a spatial peak temporal average intensity of 357 mW/cm<sup>2</sup> was used for delivering ultrasound (for 8 min, via a water-filled tube) to motor neuron cells seeded in a plastic culture dish. LIPUS stimulation significantly increased the level of the antiapoptotic protein B-cell lymphoma 2 (BCL-2) and inhibited the expression of apoptosis-associated proteins such as BCL-2-associated X protein (BAX), CCAAT/enhancer-binding protein-homologous protein (CHOP), and caspase-12, thus extending the survival of motor neurons. LIPUS stimulation also enhanced Ca<sup>2+</sup> signaling and activated the Ca<sup>2+</sup>-dependent transcription factors as nuclear factor of activated T cells (NFAT) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Furthermore, LIPUS stimulation induced the activation of the serine/threonine kinase protein kinase B (AKT). Thus, LIPUS stimulation prevented oxidative/ER stress–mediated mitochondrial dysfunction. In conclusion, as a safe and noninvasive method, LIPUS stimulation can facilitate further development of ultrasound neuromodulation as a tool for neuroscience research.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107499"},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating annulus sealing properties using the flexural wave spectrum in pitch-catch well-logging 在间距捕捉测井中利用挠曲波谱估算环空密封性能。
IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Pub Date : 2024-10-28 DOI: 10.1016/j.ultras.2024.107491
Sander Bøe Thygesen , Tore Lie Sirevaag , Sven Peter Näsholm
Safe oil and gas well operations require appropriate sealing of the annulus casing. Pitch-catch ultrasound logging measurements can be used for well-barrier inspection. In the analysis of such data, an important aspect is to determine whether there is cement or mud behind the casing.
This paper presents a data processing approach to differentiate between fluid and solid behind the casing from pitch-catch datasets. It is based on the spectral signature of the casing flexural wave, in which a notch-like dip might be observed. This dip is understood to occur in most solid annulus scenarios. However, when the annulus velocity exceeds a certain limit or is below a threshold, a dip is not produced. The frequency where the dip occurs is associated with an overlap between the flexural phase-velocity and the annulus P-wave velocity. This is exploited by picking the notch frequency, and then its value is used to estimate the annulus material P-wave velocity.
On the basis of this insight, a method for distinguishing solids from fluids is presented. The outcome is a binary algorithm that detects a dip (or no dip), and which in addition differentiates between annulus materials using the estimated velocity. In addition, we analyze the accuracy of the velocity estimation. It is straightforward to adopt this in an operational setting. This paper demonstrates the performance and accuracy of the algorithm for both simulated data and field recordings.
油气井的安全作业要求对环形套管进行适当的密封。间距捕捉超声波测井测量可用于井障检查。在分析此类数据时,一个重要的方面是确定套管后面是水泥还是泥浆。本文介绍了一种数据处理方法,用于从螺距捕捉数据集中区分套管后的流体和固体。该方法基于套管挠曲波的频谱特征,其中可能会观察到类似凹槽的倾角。据了解,在大多数固体环空情况下都会出现这种凹陷。然而,当环空速度超过一定限度或低于阈值时,就不会产生凹陷。出现凹陷的频率与挠曲相速度和环面 P 波速度之间的重叠有关。利用这一点,我们可以选取陷波频率,然后用其值来估算环面材料的 P 波速度。在此基础上,提出了一种区分固体和流体的方法。该方法是一种二进制算法,可检测凹陷(或无凹陷),并利用估算的速度区分环状材料。此外,我们还分析了速度估算的准确性。这种算法可以直接应用于实际工作中。本文展示了该算法在模拟数据和现场记录方面的性能和准确性。
{"title":"Estimating annulus sealing properties using the flexural wave spectrum in pitch-catch well-logging","authors":"Sander Bøe Thygesen ,&nbsp;Tore Lie Sirevaag ,&nbsp;Sven Peter Näsholm","doi":"10.1016/j.ultras.2024.107491","DOIUrl":"10.1016/j.ultras.2024.107491","url":null,"abstract":"<div><div>Safe oil and gas well operations require appropriate sealing of the annulus casing. Pitch-catch ultrasound logging measurements can be used for well-barrier inspection. In the analysis of such data, an important aspect is to determine whether there is cement or mud behind the casing.</div><div>This paper presents a data processing approach to differentiate between fluid and solid behind the casing from pitch-catch datasets. It is based on the spectral signature of the casing flexural wave, in which a notch-like dip might be observed. This dip is understood to occur in most solid annulus scenarios. However, when the annulus velocity exceeds a certain limit or is below a threshold, a dip is not produced. The frequency where the dip occurs is associated with an overlap between the flexural phase-velocity and the annulus P-wave velocity. This is exploited by picking the notch frequency, and then its value is used to estimate the annulus material P-wave velocity.</div><div>On the basis of this insight, a method for distinguishing solids from fluids is presented. The outcome is a binary algorithm that detects a dip (or no dip), and which in addition differentiates between annulus materials using the estimated velocity. In addition, we analyze the accuracy of the velocity estimation. It is straightforward to adopt this in an operational setting. This paper demonstrates the performance and accuracy of the algorithm for both simulated data and field recordings.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107491"},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RFImageNet framework for segmentation of ultrasound images with spectra-augmented radiofrequency signals 利用频谱增强射频信号分割超声图像的 RFImageNet 框架
IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Pub Date : 2024-10-28 DOI: 10.1016/j.ultras.2024.107498
Zhun Xie , Jiaqi Han , Nan Ji , Lijun Xu , Jianguo Ma
Computer-aided segmentation of medical ultrasound images assists in medical diagnosis, promoting accuracy and reducing the burden of sonographers. However, the existing ultrasonic intelligent segmentation models are mainly based on B-mode grayscale images, which lack sufficient clarity and contrast compared to natural images. Previous research has indicated that ultrasound radiofrequency (RF) signals contain rich spectral information that could be beneficial for tissue recognition but is lost in grayscale images. In this paper, we introduce an image segmentation framework, RFImageNet, that leverages spectral and amplitude information from RF signals to segment ultrasound image. Firstly, the positive and negative values in the RF signal are separated into the red and green channels respectively in the proposed RF image, ensuring the preservation of frequency information. Secondly, we developed a deep learning model, RFNet, tailored to the specific input image size requirements. Thirdly, RFNet was trained using RF images with spectral data augmentation and tested against other models. The proposed method achieved a mean intersection over union (mIoU) of 54.99% and a dice score of 63.89% in the segmentation of rat abdominal tissues, as well as a mIoU of 63.28% and a dice score of 68.92% in distinguishing between benign and malignant breast tumors. These results highlight the potential of combining RF signals with deep learning algorithms for enhanced diagnostic capabilities.
计算机辅助医学超声图像分割有助于医学诊断,提高准确性并减轻超声技师的负担。然而,现有的超声波智能分割模型主要基于 B 型灰度图像,与自然图像相比缺乏足够的清晰度和对比度。以往的研究表明,超声射频(RF)信号包含丰富的频谱信息,这些信息有利于组织识别,但在灰度图像中却丢失了。本文介绍了一种图像分割框架 RFImageNet,它能利用射频信号的光谱和振幅信息来分割超声图像。首先,在所提出的射频图像中,射频信号中的正负值被分别分离到红色和绿色通道中,确保频率信息的保留。其次,我们开发了一个深度学习模型 RFNet,以满足特定输入图像大小的要求。第三,我们使用带有光谱数据增强功能的射频图像对 RFNet 进行了训练,并与其他模型进行了对比测试。在对大鼠腹部组织进行分割时,所提出的方法取得了 54.99% 的平均交集大于联合(mIoU)和 63.89% 的骰子分数;在区分良性和恶性乳腺肿瘤时,取得了 63.28% 的平均交集大于联合(mIoU)和 68.92% 的骰子分数。这些结果凸显了将射频信号与深度学习算法相结合以增强诊断能力的潜力。
{"title":"RFImageNet framework for segmentation of ultrasound images with spectra-augmented radiofrequency signals","authors":"Zhun Xie ,&nbsp;Jiaqi Han ,&nbsp;Nan Ji ,&nbsp;Lijun Xu ,&nbsp;Jianguo Ma","doi":"10.1016/j.ultras.2024.107498","DOIUrl":"10.1016/j.ultras.2024.107498","url":null,"abstract":"<div><div>Computer-aided segmentation of medical ultrasound images assists in medical diagnosis, promoting accuracy and reducing the burden of sonographers. However, the existing ultrasonic intelligent segmentation models are mainly based on B-mode grayscale images, which lack sufficient clarity and contrast compared to natural images. Previous research has indicated that ultrasound radiofrequency (RF) signals contain rich spectral information that could be beneficial for tissue recognition but is lost in grayscale images. In this paper, we introduce an image segmentation framework, RFImageNet, that leverages spectral and amplitude information from RF signals to segment ultrasound image. Firstly, the positive and negative values in the RF signal are separated into the red and green channels respectively in the proposed RF image, ensuring the preservation of frequency information. Secondly, we developed a deep learning model, RFNet, tailored to the specific input image size requirements. Thirdly, RFNet was trained using RF images with spectral data augmentation and tested against other models. The proposed method achieved a mean intersection over union (mIoU) of 54.99% and a dice score of 63.89% in the segmentation of rat abdominal tissues, as well as a mIoU of 63.28% and a dice score of 68.92% in distinguishing between benign and malignant breast tumors. These results highlight the potential of combining RF signals with deep learning algorithms for enhanced diagnostic capabilities.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107498"},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ultrasonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1