With the exploding demand of rapid information transmission, high-frequency acoustic filtering devices are becoming an immediate need. Longitudinal leaky surface acoustic wave (LL-SAW) devices with unique advantages can be a promising platform. In this paper, we introduce a 100 nm intermediate oxide layer into the X-cut lithium niobate on silicon carbide (LiNbO3/SiC) to improve the in-band performance of LL-SAW resonators. First, the dispersion curves of the structures are analyzed by finite element method. In this part, we successfully interpret the intrinsic low quality factor (Q) of LL-SAW on LiNbO3/SiC in general design, and predict the enhancement of Q by introducing an intermediate oxide layer without degradation on spurious response. Then, one port resonators considered in the simulation are fabricated and measured. As a result, enhancements in Bode Q among the whole passband are confirmed. Compared with devices state of art, resonators with leading performances are demonstrated. The fabricated resonators have peak-valley admittance ratio of 63.87 dB, Bode Q of ∼300 at fr and ∼530 at far, keff2of 15.66 % and phase velocity of 6187.3 m/s. Additionally, the resonant frequency of SH1 mode shifts to higher frequency. This work enables the design of next generation high frequency mobile communication filters.
{"title":"Band edge modulation for high-performance LL-SAW resonators on LiNbO<sub>3</sub>/SiC by introducing an ultra-thin intermediate oxide layer.","authors":"Juxing He, Shibin Zhang, Pengcheng Zheng, Xiaoli Fang, Hulin Yao, Mijing Sun, Dongchen Sui, Yanlong Yao, Chongxi Song, Zheng Zhou, Xin Ou","doi":"10.1016/j.ultras.2024.107508","DOIUrl":"https://doi.org/10.1016/j.ultras.2024.107508","url":null,"abstract":"<p><p>With the exploding demand of rapid information transmission, high-frequency acoustic filtering devices are becoming an immediate need. Longitudinal leaky surface acoustic wave (LL-SAW) devices with unique advantages can be a promising platform. In this paper, we introduce a 100 nm intermediate oxide layer into the X-cut lithium niobate on silicon carbide (LiNbO<sub>3</sub>/SiC) to improve the in-band performance of LL-SAW resonators. First, the dispersion curves of the structures are analyzed by finite element method. In this part, we successfully interpret the intrinsic low quality factor (Q) of LL-SAW on LiNbO<sub>3</sub>/SiC in general design, and predict the enhancement of Q by introducing an intermediate oxide layer without degradation on spurious response. Then, one port resonators considered in the simulation are fabricated and measured. As a result, enhancements in Bode Q among the whole passband are confirmed. Compared with devices state of art, resonators with leading performances are demonstrated. The fabricated resonators have peak-valley admittance ratio of 63.87 dB, Bode Q of ∼300 at f<sub>r</sub> and ∼530 at f<sub>ar</sub>, k<sub>eff</sub><sup>2</sup>of 15.66 % and phase velocity of 6187.3 m/s. Additionally, the resonant frequency of SH1 mode shifts to higher frequency. This work enables the design of next generation high frequency mobile communication filters.</p>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Endoplasmic reticulum (ER) stress is associated with oxidative stress, which is integral to the development of various pathological conditions, including neurodegenerative disorders. In this study, using NSC-34-a hybrid cell line established by fusing motor neuron–rich embryonic spinal cord cells with mouse neuroblastoma cells-we investigated the effects of low-intensity pulsed ultrasound (LIPUS) stimulation on oxidative (reactive oxygen species)/ER stress-induced neurodegeneration. An ultrasound transducer with a center frequency of 1.15 MHz and a spatial peak temporal average intensity of 357 mW/cm2 was used for delivering ultrasound (for 8 min, via a water-filled tube) to motor neuron cells seeded in a plastic culture dish. LIPUS stimulation significantly increased the level of the antiapoptotic protein B-cell lymphoma 2 (BCL-2) and inhibited the expression of apoptosis-associated proteins such as BCL-2-associated X protein (BAX), CCAAT/enhancer-binding protein-homologous protein (CHOP), and caspase-12, thus extending the survival of motor neurons. LIPUS stimulation also enhanced Ca2+ signaling and activated the Ca2+-dependent transcription factors as nuclear factor of activated T cells (NFAT) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Furthermore, LIPUS stimulation induced the activation of the serine/threonine kinase protein kinase B (AKT). Thus, LIPUS stimulation prevented oxidative/ER stress–mediated mitochondrial dysfunction. In conclusion, as a safe and noninvasive method, LIPUS stimulation can facilitate further development of ultrasound neuromodulation as a tool for neuroscience research.
{"title":"Low-intensity pulsed ultrasound reduces oxidative and endoplasmic reticulum stress in motor neuron cells","authors":"Thi-Thuyet Truong , Chih-Chung Huang , Wen-Tai Chiu","doi":"10.1016/j.ultras.2024.107499","DOIUrl":"10.1016/j.ultras.2024.107499","url":null,"abstract":"<div><div>Endoplasmic reticulum (ER) stress is associated with oxidative stress, which is integral to the development of various pathological conditions, including neurodegenerative disorders. In this study, using NSC-34-a hybrid cell line established by fusing motor neuron–rich embryonic spinal cord cells with mouse neuroblastoma cells-we investigated the effects of low-intensity pulsed ultrasound (LIPUS) stimulation on oxidative (reactive oxygen species)/ER stress-induced neurodegeneration. An ultrasound transducer with a center frequency of 1.15 MHz and a spatial peak temporal average intensity of 357 mW/cm<sup>2</sup> was used for delivering ultrasound (for 8 min, via a water-filled tube) to motor neuron cells seeded in a plastic culture dish. LIPUS stimulation significantly increased the level of the antiapoptotic protein B-cell lymphoma 2 (BCL-2) and inhibited the expression of apoptosis-associated proteins such as BCL-2-associated X protein (BAX), CCAAT/enhancer-binding protein-homologous protein (CHOP), and caspase-12, thus extending the survival of motor neurons. LIPUS stimulation also enhanced Ca<sup>2+</sup> signaling and activated the Ca<sup>2+</sup>-dependent transcription factors as nuclear factor of activated T cells (NFAT) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Furthermore, LIPUS stimulation induced the activation of the serine/threonine kinase protein kinase B (AKT). Thus, LIPUS stimulation prevented oxidative/ER stress–mediated mitochondrial dysfunction. In conclusion, as a safe and noninvasive method, LIPUS stimulation can facilitate further development of ultrasound neuromodulation as a tool for neuroscience research.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.ultras.2024.107491
Sander Bøe Thygesen, Tore Lie Sirevaag, Sven Peter Näsholm
Safe oil and gas well operations require appropriate sealing of the annulus casing. Pitch-catch ultrasound logging measurements can be used for well-barrier inspection. In the analysis of such data, an important aspect is to determine whether there is cement or mud behind the casing. This paper presents a data processing approach to differentiate between fluid and solid behind the casing from pitch-catch datasets. It is based on the spectral signature of the casing flexural wave, in which a notch-like dip might be observed. This dip is understood to occur in most solid annulus scenarios. However, when the annulus velocity exceeds a certain limit or is below a threshold, a dip is not produced. The frequency where the dip occurs is associated with an overlap between the flexural phase-velocity and the annulus P-wave velocity. This is exploited by picking the notch frequency, and then its value is used to estimate the annulus material P-wave velocity. On the basis of this insight, a method for distinguishing solids from fluids is presented. The outcome is a binary algorithm that detects a dip (or no dip), and which in addition differentiates between annulus materials using the estimated velocity. In addition, we analyze the accuracy of the velocity estimation. It is straightforward to adopt this in an operational setting. This paper demonstrates the performance and accuracy of the algorithm for both simulated data and field recordings.
{"title":"Estimating annulus sealing properties using the flexural wave spectrum in pitch-catch well-logging.","authors":"Sander Bøe Thygesen, Tore Lie Sirevaag, Sven Peter Näsholm","doi":"10.1016/j.ultras.2024.107491","DOIUrl":"https://doi.org/10.1016/j.ultras.2024.107491","url":null,"abstract":"<p><p>Safe oil and gas well operations require appropriate sealing of the annulus casing. Pitch-catch ultrasound logging measurements can be used for well-barrier inspection. In the analysis of such data, an important aspect is to determine whether there is cement or mud behind the casing. This paper presents a data processing approach to differentiate between fluid and solid behind the casing from pitch-catch datasets. It is based on the spectral signature of the casing flexural wave, in which a notch-like dip might be observed. This dip is understood to occur in most solid annulus scenarios. However, when the annulus velocity exceeds a certain limit or is below a threshold, a dip is not produced. The frequency where the dip occurs is associated with an overlap between the flexural phase-velocity and the annulus P-wave velocity. This is exploited by picking the notch frequency, and then its value is used to estimate the annulus material P-wave velocity. On the basis of this insight, a method for distinguishing solids from fluids is presented. The outcome is a binary algorithm that detects a dip (or no dip), and which in addition differentiates between annulus materials using the estimated velocity. In addition, we analyze the accuracy of the velocity estimation. It is straightforward to adopt this in an operational setting. This paper demonstrates the performance and accuracy of the algorithm for both simulated data and field recordings.</p>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.ultras.2024.107498
Zhun Xie , Jiaqi Han , Nan Ji , Lijun Xu , Jianguo Ma
Computer-aided segmentation of medical ultrasound images assists in medical diagnosis, promoting accuracy and reducing the burden of sonographers. However, the existing ultrasonic intelligent segmentation models are mainly based on B-mode grayscale images, which lack sufficient clarity and contrast compared to natural images. Previous research has indicated that ultrasound radiofrequency (RF) signals contain rich spectral information that could be beneficial for tissue recognition but is lost in grayscale images. In this paper, we introduce an image segmentation framework, RFImageNet, that leverages spectral and amplitude information from RF signals to segment ultrasound image. Firstly, the positive and negative values in the RF signal are separated into the red and green channels respectively in the proposed RF image, ensuring the preservation of frequency information. Secondly, we developed a deep learning model, RFNet, tailored to the specific input image size requirements. Thirdly, RFNet was trained using RF images with spectral data augmentation and tested against other models. The proposed method achieved a mean intersection over union (mIoU) of 54.99% and a dice score of 63.89% in the segmentation of rat abdominal tissues, as well as a mIoU of 63.28% and a dice score of 68.92% in distinguishing between benign and malignant breast tumors. These results highlight the potential of combining RF signals with deep learning algorithms for enhanced diagnostic capabilities.
{"title":"RFImageNet framework for segmentation of ultrasound images with spectra-augmented radiofrequency signals","authors":"Zhun Xie , Jiaqi Han , Nan Ji , Lijun Xu , Jianguo Ma","doi":"10.1016/j.ultras.2024.107498","DOIUrl":"10.1016/j.ultras.2024.107498","url":null,"abstract":"<div><div>Computer-aided segmentation of medical ultrasound images assists in medical diagnosis, promoting accuracy and reducing the burden of sonographers. However, the existing ultrasonic intelligent segmentation models are mainly based on B-mode grayscale images, which lack sufficient clarity and contrast compared to natural images. Previous research has indicated that ultrasound radiofrequency (RF) signals contain rich spectral information that could be beneficial for tissue recognition but is lost in grayscale images. In this paper, we introduce an image segmentation framework, RFImageNet, that leverages spectral and amplitude information from RF signals to segment ultrasound image. Firstly, the positive and negative values in the RF signal are separated into the red and green channels respectively in the proposed RF image, ensuring the preservation of frequency information. Secondly, we developed a deep learning model, RFNet, tailored to the specific input image size requirements. Thirdly, RFNet was trained using RF images with spectral data augmentation and tested against other models. The proposed method achieved a mean intersection over union (mIoU) of 54.99% and a dice score of 63.89% in the segmentation of rat abdominal tissues, as well as a mIoU of 63.28% and a dice score of 68.92% in distinguishing between benign and malignant breast tumors. These results highlight the potential of combining RF signals with deep learning algorithms for enhanced diagnostic capabilities.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.ultras.2024.107496
Changze Li, Ping Chen, Tong Fu, Xin Yu
It is crucial to obtain the internal hardness distribution in polycrystalline materials to evaluate the mechanical performance of components and monitor their service life. Current methods, however, fail to meet the non-destructive evaluation needs for materials with hardness gradient distributions. This paper, based on the principle of grain boundary scattering of ultrasound in polycrystalline materials, combined with the Transverse-to-Transverse Singly-Scattered Response (T-T SSR) theory, proposes an ultrasonic SSR model adapted to hardness gradient distributions. The model elucidates the influence of hardness gradient variations and grain dispersion on ultrasonic scattering. Using DREAM.3D, seven different-scale polycrystalline volumes were constructed to assess the relevance of volume-weighted average grain size and spatial correlation of hardness gradient materials. Finally, induction quenching was applied to 40Cr to induce a gradient hardness distribution internally, followed by ultrasonic backscatter experiments. The results indicate that the theoretical model and the spatial variance of measured signals align well over a relatively long time window. For the specimen with minor curvature, the theoretical hardness distribution obtained by the model is accurate, with an average error of 2.55 % compared to destructive testing data. However, the results for the larger curvature reveal limitations in the model.
获取多晶材料的内部硬度分布对于评估部件的机械性能和监控其使用寿命至关重要。然而,目前的方法无法满足对具有硬度梯度分布的材料进行无损评估的需求。本文基于超声波在多晶材料中的晶界散射原理,结合横向到横向单散射响应(T-T SSR)理论,提出了一种适用于硬度梯度分布的超声 SSR 模型。该模型阐明了硬度梯度变化和晶粒分散对超声散射的影响。利用 DREAM.3D,构建了七个不同尺度的多晶体,以评估硬度梯度材料的体积加权平均晶粒尺寸和空间相关性的相关性。最后,对 40Cr 进行了感应淬火,以在内部诱导硬度梯度分布,随后进行了超声反向散射实验。结果表明,在相对较长的时间窗口内,理论模型和测量信号的空间方差非常吻合。对于曲率较小的试样,模型得到的理论硬度分布是准确的,与破坏性测试数据相比,平均误差为 2.55%。然而,较大曲率的结果显示了模型的局限性。
{"title":"Ultrasonic backscattering measurement of hardness gradient distribution in polycrystalline materials","authors":"Changze Li, Ping Chen, Tong Fu, Xin Yu","doi":"10.1016/j.ultras.2024.107496","DOIUrl":"10.1016/j.ultras.2024.107496","url":null,"abstract":"<div><div>It is crucial to obtain the internal hardness distribution in polycrystalline materials to evaluate the mechanical performance of components and monitor their service life. Current methods, however, fail to meet the non-destructive evaluation needs for materials with hardness gradient distributions. This paper, based on the principle of grain boundary scattering of ultrasound in polycrystalline materials, combined with the Transverse-to-Transverse Singly-Scattered Response (T-T SSR) theory, proposes an ultrasonic SSR model adapted to hardness gradient distributions. The model elucidates the influence of hardness gradient variations and grain dispersion on ultrasonic scattering. Using DREAM.3D, seven different-scale polycrystalline volumes were constructed to assess the relevance of volume-weighted average grain size and spatial correlation of hardness gradient materials. Finally, induction quenching was applied to 40Cr to induce a gradient hardness distribution internally, followed by ultrasonic backscatter experiments. The results indicate that the theoretical model and the spatial variance of measured signals align well over a relatively long time window. For the specimen with minor curvature, the theoretical hardness distribution obtained by the model is accurate, with an average error of 2.55 % compared to destructive testing data. However, the results for the larger curvature reveal limitations in the model.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.ultras.2024.107500
Ne Liu , Shuyun Cheng , Jiaqi Fan , Ying Zhu , Ning Yang , Yongdong Pan
The nonlinear ultrasonic inspection is a method that the higher harmonics generated by the interaction of ultrasound and fatigue damage, which is used to evaluate material properties. In this paper, the difference between experimental measurement and simulation analysis was discussed, based on the simulation and experimentation. The results of simulation and experimentation both show that the nonlinear coefficient increases, reaches the maximum near the wavelength of , and then decreases to a certain extent and stabilizes. The difference between the simulation and the experimentation is that the crack depth corresponding to the maxima of the nonlinear coefficient and the relative variation between the nonlinear coefficient and the peak are different. And the causes of the difference were analyzed according to the simulation results and experimental measurements, which provides a reliable basis for the further study of the evaluation mechanism of the nonlinear Rayleigh wave.
{"title":"Simulation and experimentation of nonlinear Rayleigh wave inspection of fatigue surface microcracks","authors":"Ne Liu , Shuyun Cheng , Jiaqi Fan , Ying Zhu , Ning Yang , Yongdong Pan","doi":"10.1016/j.ultras.2024.107500","DOIUrl":"10.1016/j.ultras.2024.107500","url":null,"abstract":"<div><div>The nonlinear ultrasonic inspection is a method that the higher harmonics generated by the interaction of ultrasound and fatigue damage, which is used to evaluate material properties. In this paper, the difference between experimental measurement and simulation analysis was discussed, based on the simulation and experimentation. The results of simulation and experimentation both show that the nonlinear coefficient increases, reaches the maximum near the wavelength of <span><math><mrow><mn>0.3</mn><mi>λ</mi></mrow></math></span>, and then decreases to a certain extent and stabilizes. The difference between the simulation and the experimentation is that the crack depth corresponding to the maxima of the nonlinear coefficient and the relative variation between the nonlinear coefficient and the peak are different. And the causes of the difference were analyzed according to the simulation results and experimental measurements, which provides a reliable basis for the further study of the evaluation mechanism of the nonlinear Rayleigh wave.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/j.ultras.2024.107493
Runjie Yang , Zhichao Li , Shujuan Wang , Chuanliu Jiang
The meander-line coil electromagnetic acoustic transducer (EMAT) is widely used in the field of ultrasonic nondestructive testing due to its convenience to generate specific mode of guided waves. Some design methods of the meander-coil EMATs are developed in the frequency-wavenumber domain while others in the time–space domain. In this paper, a unified theoretical framework is developed by proposing an analytical model from the system perspective. Signal transfers between different physical fields in EMAT excitation, wave propagation and EMAT reception are represented as linear time–space-invariant systems. Taking the Rayleigh wave EMAT detection as an example, the analytical model for the transfer functions of these systems is established. The analytical model is experimentally verified by different Rayleigh wave detection techniques: the conventional EMAT, the spatial pulse compression (SPC) EMAT, temporal-spatial pulse compression (TSPC) EMAT and detection cases employing the same receiving EMAT. From the system perspective, the received signal of EMAT is interpreted as the response of the filter system to the input signal. It is found that the meander-coil EMAT can be regarded as the frequency domain expression during the detection. And the frequency domain expression plays different roles in different techniques.
{"title":"Analytical modelling and analysis of the meander-line coil EMATs","authors":"Runjie Yang , Zhichao Li , Shujuan Wang , Chuanliu Jiang","doi":"10.1016/j.ultras.2024.107493","DOIUrl":"10.1016/j.ultras.2024.107493","url":null,"abstract":"<div><div>The meander-line coil electromagnetic acoustic transducer (EMAT) is widely used in the field of ultrasonic nondestructive testing due to its convenience to generate specific mode of guided waves. Some design methods of the meander-coil EMATs are developed in the frequency-wavenumber domain while others in the time–space domain. In this paper, a unified theoretical framework is developed by proposing an analytical model from the system perspective. Signal transfers between different physical fields in EMAT excitation, wave propagation and EMAT reception are represented as linear time–space-invariant systems. Taking the Rayleigh wave EMAT detection as an example, the analytical model for the transfer functions of these systems is established. The analytical model is experimentally verified by different Rayleigh wave detection techniques: the conventional EMAT, the spatial pulse compression (SPC) EMAT, temporal-spatial pulse compression (TSPC) EMAT and detection cases employing the same receiving EMAT. From the system perspective, the received signal of EMAT is interpreted as the response of the filter system to the input signal. It is found that the meander-coil EMAT can be regarded as the frequency domain expression during the detection. And the frequency domain expression plays different roles in different techniques.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For multi-layer composite materials, conventional ultrasonic testing is prone to interference from multiple reflected waves inside the multi-layer material due to factors such as material acoustic impedance differences and acoustic attenuation. This article proposes a new method to analyze propagation process of acoustic waves in multi-layer materials containing defects, and an algorithm for inverting the transfer function of one-layer from multiple reflection signals was proposed, and corresponding pulse responses were used to detect defects.
{"title":"Multiple reflection wave detection method based on inversion of multilayer material transfer function","authors":"Hao Jiang , Chong chen , Xianwen Xue , Mengyuan Li , Bowei Chen","doi":"10.1016/j.ultras.2024.107495","DOIUrl":"10.1016/j.ultras.2024.107495","url":null,"abstract":"<div><div>For multi-layer composite materials, conventional ultrasonic testing is prone to interference from multiple reflected waves inside the multi-layer material due to factors such as material acoustic impedance differences and acoustic attenuation. This article proposes a new method to analyze propagation process of acoustic waves in multi-layer materials containing defects, and an algorithm for inverting the transfer function of one-layer from multiple reflection signals was proposed, and corresponding pulse responses were used to detect defects.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1016/j.ultras.2024.107492
Guangdong Zhang , Tribikram Kundu , Pierre A. Deymier , Keith Runge
Commonly used methods for defect localization in structures are based on velocity differences (VD) or amplitude ratio (AR) (or attenuation due to scattering) measured along different sensing paths between a reference system and a defective system. A high value on a sensing path indicates a higher probability of the presence of defect on that path. We introduce an alternative approach based on the newly developed topological acoustic (TA) sensing technique for localizing defects in plate structures using Lamb waves. TA sensing exploits changes in geometric phase of acoustic waves to detect perturbations in the supporting medium. This approach uses a geometric phase change – index (GPC-I), a measure of the geometry of the acoustic field averaged over a spectral domain, as detection metric in lieu of VD or AR. Calculations based on the finite element method (FEM) in Abaqus/CAE software verifies the effectiveness of the proposed GPC-I-based defect localization method. Randomly located defects on the surface of a plate are localized with higher sensitivity and accuracy, by the GPC-I method in comparison to VD or AR-based methods.
{"title":"Defect localization in plate structures using the geometric phase of Lamb waves","authors":"Guangdong Zhang , Tribikram Kundu , Pierre A. Deymier , Keith Runge","doi":"10.1016/j.ultras.2024.107492","DOIUrl":"10.1016/j.ultras.2024.107492","url":null,"abstract":"<div><div>Commonly used methods for defect localization in structures are based on velocity differences (VD) or amplitude ratio (AR) (or attenuation due to scattering) measured along different sensing paths between a reference system and a defective system. A high value on a sensing path indicates a higher probability of the presence of defect on that path. We introduce an alternative approach based on the newly developed topological acoustic (TA) sensing technique for localizing defects in plate structures using Lamb waves. TA sensing exploits changes in geometric phase of acoustic waves to detect perturbations in the supporting medium. This approach uses a geometric phase change – index (GPC-I), a measure of the geometry of the acoustic field averaged over a spectral domain, as detection metric in lieu of VD or AR. Calculations based on the finite element method (FEM) in Abaqus/CAE software verifies the effectiveness of the proposed GPC-I-based defect localization method. Randomly located defects on the surface of a plate are localized with higher sensitivity and accuracy, by the GPC-I method in comparison to VD or AR-based methods.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.ultras.2024.107487
Tetsuya Kanagawa , Akihiro Nakamura
Using volumetric averaged equations from a two-fluid model, this study theoretically investigates linear pressure wave propagation in a quiescent liquid with many spherical gas bubbles. The speed and attenuation of sound are evaluated using the derived linear dispersion. Mono- and poly-disperse bubbly liquids are treated. To precisely describe the attenuation effect, some forms of bubble dynamics equations and temperature gradient models are employed. Focusing on the dissipative effect, we analyze the stop band that occurs in the linear dispersion relation. In the two-fluid model, even if the dissipation effect is considered, the inconvenience that the wavenumber diverges to infinity in the resonance frequency cannot be resolved. Additionally, the validity of terminating that wavenumber value in the middle of the frequency is demonstrated. To determine a linear dispersion relation that can exactly predict thermal conduction and acoustic radiation, wave propagation velocities and attenuation coefficients are compared with some experimental data and existing models. The results show that thermal conduction and acoustic radiation should be set appropriately to accurately predict the propagation velocity and attenuation except in the high frequency range, the phase velocity in the resonance frequency range, or the attenuation in the high frequency range.
{"title":"Linear pressure waves in mono- and poly-disperse bubbly liquids: Attenuation and propagation speed in slow and fast and evanescent modes","authors":"Tetsuya Kanagawa , Akihiro Nakamura","doi":"10.1016/j.ultras.2024.107487","DOIUrl":"10.1016/j.ultras.2024.107487","url":null,"abstract":"<div><div>Using volumetric averaged equations from a two-fluid model, this study theoretically investigates linear pressure wave propagation in a quiescent liquid with many spherical gas bubbles. The speed and attenuation of sound are evaluated using the derived linear dispersion. Mono- and poly-disperse bubbly liquids are treated. To precisely describe the attenuation effect, some forms of bubble dynamics equations and temperature gradient models are employed. Focusing on the dissipative effect, we analyze the stop band that occurs in the linear dispersion relation. In the two-fluid model, even if the dissipation effect is considered, the inconvenience that the wavenumber diverges to infinity in the resonance frequency cannot be resolved. Additionally, the validity of terminating that wavenumber value in the middle of the frequency is demonstrated. To determine a linear dispersion relation that can exactly predict thermal conduction and acoustic radiation, wave propagation velocities and attenuation coefficients are compared with some experimental data and existing models. The results show that thermal conduction and acoustic radiation should be set appropriately to accurately predict the propagation velocity and attenuation except in the high frequency range, the phase velocity in the resonance frequency range, or the attenuation in the high frequency range.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}