Dual single atoms (Pt, Ni) and PtNi alloy nanoparticles encapsulated N-doped carbon framework for durable ORR and HER electrocatalysts

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Sustainable Materials and Technologies Pub Date : 2024-07-27 DOI:10.1016/j.susmat.2024.e01068
{"title":"Dual single atoms (Pt, Ni) and PtNi alloy nanoparticles encapsulated N-doped carbon framework for durable ORR and HER electrocatalysts","authors":"","doi":"10.1016/j.susmat.2024.e01068","DOIUrl":null,"url":null,"abstract":"<div><p>High-activity, stable, and high-efficiency bifunctional Pt-based catalysts that promote oxygen reduction reactions (ORRs) and hydrogen evolution reactions (HERs) are urgently needed to meet the ever-intensifying energy demands. In this paper, we propose a novel strategy for enhancing an electrocatalyst's durability using a high-porosity and abundantly nitrogen-doped carbon framework (NDCF) support derived from ZIF-8. Pt<img>Ni alloy nanoparticles (NPs) surrounded by dense dual single atoms (SAs) of Pt and Ni were immobilized in a porous NDCF matrix (PtNi<sub>SA-NPs</sub>/NDCF), synergistically exhibiting bifunctional catalytic activity and durability toward ORR and HER. Under acidic conditions, the PtNi<sub>SA-NPs</sub>/NDCF exhibits a half-wave potential of 0.91 V and a favorable 4-electron pathway for ORR. It also displays an overpotential of 24.7 mV at a current density of 10 mA cm<sup>−2</sup> and a mass activity of 6.1 A mg<sub>Pt</sub><sup>−1</sup> (at 40 mV), indicating ultrahigh electrocatalytic activity for HER. Critically, the PtNi<sub>SA-NPs</sub>/NDCF showed remarkable durability over 10,000 CV cycles, reducing ORR's half-wave potential by only 4 mV and HER's overpotential by a mere 6 mV at 10 mA cm<sup>−2</sup>. We attribute this enhancement in durability to the stable graphitic carbon shell encapsulating the Pt<img>Ni alloy NPs and the enrichment of pyridinic-N coordination by the NDCF support.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724002483","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High-activity, stable, and high-efficiency bifunctional Pt-based catalysts that promote oxygen reduction reactions (ORRs) and hydrogen evolution reactions (HERs) are urgently needed to meet the ever-intensifying energy demands. In this paper, we propose a novel strategy for enhancing an electrocatalyst's durability using a high-porosity and abundantly nitrogen-doped carbon framework (NDCF) support derived from ZIF-8. PtNi alloy nanoparticles (NPs) surrounded by dense dual single atoms (SAs) of Pt and Ni were immobilized in a porous NDCF matrix (PtNiSA-NPs/NDCF), synergistically exhibiting bifunctional catalytic activity and durability toward ORR and HER. Under acidic conditions, the PtNiSA-NPs/NDCF exhibits a half-wave potential of 0.91 V and a favorable 4-electron pathway for ORR. It also displays an overpotential of 24.7 mV at a current density of 10 mA cm−2 and a mass activity of 6.1 A mgPt−1 (at 40 mV), indicating ultrahigh electrocatalytic activity for HER. Critically, the PtNiSA-NPs/NDCF showed remarkable durability over 10,000 CV cycles, reducing ORR's half-wave potential by only 4 mV and HER's overpotential by a mere 6 mV at 10 mA cm−2. We attribute this enhancement in durability to the stable graphitic carbon shell encapsulating the PtNi alloy NPs and the enrichment of pyridinic-N coordination by the NDCF support.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
封装 N 掺杂碳框架的双单质原子(铂、镍)和铂镍合金纳米颗粒,用于持久 ORR 和 HER 电催化剂
为满足日益增长的能源需求,迫切需要能促进氧还原反应(ORR)和氢进化反应(HER)的高活性、稳定和高效的双功能铂基催化剂。在本文中,我们提出了一种新的策略,利用源自 ZIF-8 的高孔富氮掺杂碳框架(NDCF)载体来增强电催化剂的耐久性。铂镍合金纳米颗粒(NPs)被致密的铂和镍双单质(SAs)包围固定在多孔 NDCF 基质(PtNiSA-NPs/NDCF)中,协同表现出对 ORR 和 HER 的双功能催化活性和耐久性。在酸性条件下,PtNiSA-NPs/NDCF 显示出 0.91 V 的半波电位和有利于 ORR 的 4 电子通路。在电流密度为 10 mA cm-2 时,它还显示出 24.7 mV 的过电位和 6.1 A mgPt-1 (40 mV 时)的质量活性,这表明它具有超高的 HER 电催化活性。重要的是,PtNiSA-NPs/NDCF 在 10,000 次 CV 循环中表现出了卓越的耐久性,在 10 mA cm-2 电流密度下,ORR 的半波电位仅降低了 4 mV,HER 的过电位仅降低了 6 mV。我们将这种耐用性的提高归功于包裹铂镍合金 NPs 的稳定石墨碳壳以及 NDCF 支持富集的吡啶-N 配位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
期刊最新文献
Potential and challenges of recycled polymer plastics and natural waste materials for additive manufacturing Advances and prospects of sulfur quantum dots in food sensing applications A new method to recycle Li-ion batteries with laser materials processing technology Printable ionic liquid modified cellulose acetate for sustainable chromic and resistive temperature sensing Tailoring SrFeO3 cathode with Ta and F allows high performance for proton-conducting solid oxide fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1