Pub Date : 2024-11-14DOI: 10.1016/j.susmat.2024.e01177
A. Alcazar-Ruiz , S. Maisano , V. Chiodo , F. Urbani , F. Dorado , L. Sanchez-Silva
This work contributes understanding technical feasibility use of an agro-industrial waste as raw material for CO2 capture. Physical and chemical activation treatments to enhance adsorption properties of exhausts olive pomace biochar were investigated. Innovatively, the effects of different kinds of activating agents (steam, CO2, H3PO4 and KOH) on activated biocarbon's properties were deeply examined, also through an original high-pressure thermobalance, that is enabled higher initial sample weights, temperatures, and pressures compared to those employed in conventional methods.
The activation conditions significantly affect the biochar morphology and CO2 adsorption capacity. Chemical activation, particularly with KOH, produced highly microporous structures, greatly enhancing CO2 adsorption. Specifically, KOH activation achieved adsorption capacities of up to 3.04 mmol/g at 30 °C and 10 bar. Textural analysis showed that KOH activation primarily increased microporosity, while other methods produced both micropores and mesopores. Interestingly, acid and physical activations were less effective, as they reduced CO2 adsorption due to changes in the internal structure. Thus, olive pomace proves to be a promising precursor for developing efficient biochar adsorbents. The use of KOH as an activating agent particularly stands out, achieving notable CO2 adsorption capacities.
这项研究有助于了解使用农用工业废料作为二氧化碳捕集原料的技术可行性。研究了如何通过物理和化学活化处理来提高橄榄渣生物炭的吸附性能。创新性地深入研究了不同种类的活化剂(蒸汽、CO2、H3PO4 和 KOH)对活化生物炭特性的影响,同时还采用了独创的高压热平衡法,与传统方法相比,这种方法可以提高初始样品重量、温度和压力。化学活化,尤其是 KOH 活化,产生了高度微孔结构,大大提高了二氧化碳吸附能力。具体而言,在 30 °C 和 10 bar 条件下,KOH 活化产生的吸附容量高达 3.04 mmol/g。质构分析表明,KOH 活化主要增加了微孔,而其他方法则同时产生微孔和中孔。有趣的是,酸活化和物理活化的效果较差,因为它们会因内部结构的变化而减少对二氧化碳的吸附。因此,橄榄渣被证明是开发高效生物炭吸附剂的理想前体。使用 KOH 作为活化剂尤为突出,可实现显著的二氧化碳吸附能力。
{"title":"Enhancing CO2 capture performance through activation of olive pomace biochar: A comparative study of physical and chemical methods","authors":"A. Alcazar-Ruiz , S. Maisano , V. Chiodo , F. Urbani , F. Dorado , L. Sanchez-Silva","doi":"10.1016/j.susmat.2024.e01177","DOIUrl":"10.1016/j.susmat.2024.e01177","url":null,"abstract":"<div><div>This work contributes understanding technical feasibility use of an agro-industrial waste as raw material for CO<sub>2</sub> capture. Physical and chemical activation treatments to enhance adsorption properties of exhausts olive pomace biochar were investigated. Innovatively, the effects of different kinds of activating agents (steam, CO<sub>2</sub>, H<sub>3</sub>PO<sub>4</sub> and KOH) on activated biocarbon's properties were deeply examined, also through an original high-pressure thermobalance, that is enabled higher initial sample weights, temperatures, and pressures compared to those employed in conventional methods.</div><div>The activation conditions significantly affect the biochar morphology and CO<sub>2</sub> adsorption capacity. Chemical activation, particularly with KOH, produced highly microporous structures, greatly enhancing CO<sub>2</sub> adsorption. Specifically, KOH activation achieved adsorption capacities of up to 3.04 mmol/g at 30 °C and 10 bar. Textural analysis showed that KOH activation primarily increased microporosity, while other methods produced both micropores and mesopores. Interestingly, acid and physical activations were less effective, as they reduced CO<sub>2</sub> adsorption due to changes in the internal structure. Thus, olive pomace proves to be a promising precursor for developing efficient biochar adsorbents. The use of KOH as an activating agent particularly stands out, achieving notable CO<sub>2</sub> adsorption capacities.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01177"},"PeriodicalIF":8.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1016/j.susmat.2024.e01175
Pravas Ranjan Behera , Rifat Farzana , Veena Sahajwalla
This paper elucidates a novel and sustainable way of bringing two major sub e-waste streams (waste electrodes of Ni-MH battery and waste toner powder) together to manufacture NiFe alloy. Reduction of oxides (present in the Ni-MH battery electrode) with carbon sourced from waste toner was performed at 1550 °C which observed the formation of NiFe alloy as reaction proceeded to 1 h. Percentages of waste toner in the 2 g feed material containing waste electrode mass was varied to study the metal/slag formation and separation alike. The product and slag phases were both analysed by X-ray powder diffraction, Scanning electron microscopy, Energy dispersive x-ray spectroscopy, Laser induced breakdown spectrometer to confirm the formation and metallic composition of the NiFe alloy (>75 % Ni and > 14 % Fe) and the mixture of rare earth oxides present in the slag phase. In addition to manufacturing the metallic alloy, which evinces a possibility of being used as a feedstock in industrial applications, this innovative recycling technique also brings down the burden on landfills.
本文阐明了一种将两种主要电子废物流(镍氢电池的废电极和废墨粉)结合起来制造镍铁合金的新型可持续方法。在 1550 °C的温度下,用来自废墨粉的碳还原氧化物(存在于镍氢电池电极中),观察到反应进行到 1 小时时形成的镍铁合金。通过 X 射线粉末衍射、扫描电子显微镜、能量色散 X 射线光谱和激光诱导击穿光谱仪对产品和熔渣相进行分析,以确认镍铁合金的形成和金属成分(75 % 镍和 14 % 铁)以及熔渣相中存在的稀土氧化物混合物。除了制造金属合金,这种创新的回收技术还有可能被用作工业应用的原料,同时也减轻了垃圾填埋场的负担。
{"title":"Production of NiFe alloy by combined recycling of waste nickel-metal hydride batteries and waste toner powder","authors":"Pravas Ranjan Behera , Rifat Farzana , Veena Sahajwalla","doi":"10.1016/j.susmat.2024.e01175","DOIUrl":"10.1016/j.susmat.2024.e01175","url":null,"abstract":"<div><div>This paper elucidates a novel and sustainable way of bringing two major sub e-waste streams (waste electrodes of Ni-MH battery and waste toner powder) together to manufacture Ni<img>Fe alloy. Reduction of oxides (present in the Ni-MH battery electrode) with carbon sourced from waste toner was performed at 1550 °C which observed the formation of Ni<img>Fe alloy as reaction proceeded to 1 h. Percentages of waste toner in the 2 g feed material containing waste electrode mass was varied to study the metal/slag formation and separation alike. The product and slag phases were both analysed by X-ray powder diffraction, Scanning electron microscopy, Energy dispersive x-ray spectroscopy, Laser induced breakdown spectrometer to confirm the formation and metallic composition of the Ni<img>Fe alloy (>75 % Ni and > 14 % Fe) and the mixture of rare earth oxides present in the slag phase. In addition to manufacturing the metallic alloy, which evinces a possibility of being used as a feedstock in industrial applications, this innovative recycling technique also brings down the burden on landfills.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01175"},"PeriodicalIF":8.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.susmat.2024.e01163
Mehnuma Tabassum , Kris De Brabanter , Gül E. Kremer
Remanufacturing is a well-established end-of-life (EOL) strategy that promises significant savings in energy and carbon emissions. However, the current design practices are not remanufacturing-inclusive, i.e., the majority of products are designed for a single life cycle. As a result, potential products that can sustain multiple life cycles are deprived of additional benefits of being designed for remanufacturing, such as reduced material usage, lower cost, and improved environmental impact. Moreover, the uncertainty in design, material selection, and economics are not considered to produce remanufacturable designs. Accordingly, this research proposes a design for remanufacturing (DfRem) framework that accounts for design uncertainty and material price volatility. The framework systematically explores the design space, performs design optimization under uncertainty, followed by topology optimization to provide additional mass savings, and finally, a price volatility analysis for plausible design material choices. The candidate designs are evaluated based on their design mass, material price volatility, failure mode characteristics, carbon footprint, and embodied energy impacts. The proposed framework's utility is demonstrated via the use of an engine cylinder head case study subjected to thermo-mechanical loads along with fatigue and wear failure. Considering grey cast iron and aluminum alloy as the design material choices, it was found that the cast iron design reduced the initial design mass by 6% as opposed to a 5% decrease for aluminum. On the other hand, about 8% area of the cast iron design failed due to fatigue, compared to 3% for aluminum. We further observed that although the aluminum design provided better mechanical performance than the cast iron design, this material was more expensive and volatile in price.
{"title":"Surrogate-assisted optimization under uncertainty for design for remanufacturing considering material price volatility","authors":"Mehnuma Tabassum , Kris De Brabanter , Gül E. Kremer","doi":"10.1016/j.susmat.2024.e01163","DOIUrl":"10.1016/j.susmat.2024.e01163","url":null,"abstract":"<div><div>Remanufacturing is a well-established end-of-life (EOL) strategy that promises significant savings in energy and carbon emissions. However, the current design practices are not remanufacturing-inclusive, i.e., the majority of products are designed for a single life cycle. As a result, potential products that can sustain multiple life cycles are deprived of additional benefits of being designed for remanufacturing, such as reduced material usage, lower cost, and improved environmental impact. Moreover, the uncertainty in design, material selection, and economics are not considered to produce remanufacturable designs. Accordingly, this research proposes a design for remanufacturing (DfRem) framework that accounts for design uncertainty and material price volatility. The framework systematically explores the design space, performs design optimization under uncertainty, followed by topology optimization to provide additional mass savings, and finally, a price volatility analysis for plausible design material choices. The candidate designs are evaluated based on their design mass, material price volatility, failure mode characteristics, carbon footprint, and embodied energy impacts. The proposed framework's utility is demonstrated via the use of an engine cylinder head case study subjected to thermo-mechanical loads along with fatigue and wear failure. Considering grey cast iron and aluminum alloy as the design material choices, it was found that the cast iron design reduced the initial design mass by 6% as opposed to a 5% decrease for aluminum. On the other hand, about 8% area of the cast iron design failed due to fatigue, compared to 3% for aluminum. We further observed that although the aluminum design provided better mechanical performance than the cast iron design, this material was more expensive and volatile in price.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01163"},"PeriodicalIF":8.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.susmat.2024.e01180
Emma Gordy , Chieh-Yi Lin , Lloyd Nackley , Fei Long , Hong Liu , Jooyeoun Jung , Yanyun Zhao
Biodegradable nursery pots (BNPs) composed of 50 % hemp hurd and 50 % recycled cardboard fibers (w/w dry basis) were produced using a custom-built handheld molded pulp device. Milling followed by sequential peracetic acid and sodium hydroxide delignification treatment reduced lignin content of hemp hurd from 23.76 % to 2.39 %, liberating cellulose and hemicellulose fibers for enabling the formation of interfiber interactions in molded pulp formulations. Beeswax and precipitated calcium carbonate based hydrophobic coating at ∼10 μm thickness significantly enhanced hydrophobicity of the BNPs, as indicated by the surface contact and sliding angle of 116.25° and 34.82°, respectively. Anaerobic biodegradability of BNP was confirmed via carbon dioxide and methane gas accumulation measurements. Developed BNPs were successfully validated through an eleven week greenhouse planting trial. This study introduced a new biodegradable molded pulp formulation made from hemp hurd and validated its application as an alternative to single use plastic nursery pots for growing seedlings.
{"title":"Development and validation of hydrophobic molded pulp nursery pots made of hemp hurd","authors":"Emma Gordy , Chieh-Yi Lin , Lloyd Nackley , Fei Long , Hong Liu , Jooyeoun Jung , Yanyun Zhao","doi":"10.1016/j.susmat.2024.e01180","DOIUrl":"10.1016/j.susmat.2024.e01180","url":null,"abstract":"<div><div>Biodegradable nursery pots (BNPs) composed of 50 % hemp hurd and 50 % recycled cardboard fibers (<em>w</em>/w dry basis) were produced using a custom-built handheld molded pulp device. Milling followed by sequential peracetic acid and sodium hydroxide delignification treatment reduced lignin content of hemp hurd from 23.76 % to 2.39 %, liberating cellulose and hemicellulose fibers for enabling the formation of interfiber interactions in molded pulp formulations. Beeswax and precipitated calcium carbonate based hydrophobic coating at ∼10 μm thickness significantly enhanced hydrophobicity of the BNPs, as indicated by the surface contact and sliding angle of 116.25° and 34.82°, respectively. Anaerobic biodegradability of BNP was confirmed via carbon dioxide and methane gas accumulation measurements. Developed BNPs were successfully validated through an eleven week greenhouse planting trial. This study introduced a new biodegradable molded pulp formulation made from hemp hurd and validated its application as an alternative to single use plastic nursery pots for growing seedlings.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01180"},"PeriodicalIF":8.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.susmat.2024.e01173
Haoran Wang , Fan He , Lei Wang , Chao Feng , Ling Zhao , Hongzhu Ji , Shuhong Li , Wenjun Wang , Qiang Shi , Yunlong Liu , Di Huang
Organic solar cells (OSCs), with their advantages such as lightweight, flexible and environmental sustainability, have attracted tremendous attention in the past decades. Among OSCs, the PM6:BTP-eC9 based OSCs has gained significant interest due to its wide spectral response, tunability of energy levels, processability and high power conversion efficiency (PCE), resulting in a substantial increase in published works. To date, the PCE of laboratory-grade PM6:BTP-eC9 based OSCs has exceeded 20 %. And this efficiency has laid a solid foundation for its industrial application. This paper mainly summarizes the comprehensive progress of PM6:BTP-eC9 based OSCs, providing detailed explanations on improvement methods such as interface layers modification, active layer morphology regulation, ternary strategy, and so on, seeking to comprehend the impact of various treatments on the performance of PM6:BTP-eC9 based OSCs and to broaden the utilization of PM6:BTP-eC9 materials. Additionally, we offer a perspective on the emerging prospects for PM6:BTP-eC9 based OSCs. Finally, this review may contribute to the thorough research of PM6:BTP-eC9 based OSCs and the realization of the material's full potential for future researchers in this field.
{"title":"A comprehensive review of PM6:BTP-eC9 based non-fullerene organic solar cells","authors":"Haoran Wang , Fan He , Lei Wang , Chao Feng , Ling Zhao , Hongzhu Ji , Shuhong Li , Wenjun Wang , Qiang Shi , Yunlong Liu , Di Huang","doi":"10.1016/j.susmat.2024.e01173","DOIUrl":"10.1016/j.susmat.2024.e01173","url":null,"abstract":"<div><div>Organic solar cells (OSCs), with their advantages such as lightweight, flexible and environmental sustainability, have attracted tremendous attention in the past decades. Among OSCs, the PM6:BTP-eC9 based OSCs has gained significant interest due to its wide spectral response, tunability of energy levels, processability and high power conversion efficiency (PCE), resulting in a substantial increase in published works. To date, the PCE of laboratory-grade PM6:BTP-eC9 based OSCs has exceeded 20 %. And this efficiency has laid a solid foundation for its industrial application. This paper mainly summarizes the comprehensive progress of PM6:BTP-eC9 based OSCs, providing detailed explanations on improvement methods such as interface layers modification, active layer morphology regulation, ternary strategy, and so on, seeking to comprehend the impact of various treatments on the performance of PM6:BTP-eC9 based OSCs and to broaden the utilization of PM6:BTP-eC9 materials. Additionally, we offer a perspective on the emerging prospects for PM6:BTP-eC9 based OSCs. Finally, this review may contribute to the thorough research of PM6:BTP-eC9 based OSCs and the realization of the material's full potential for future researchers in this field.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01173"},"PeriodicalIF":8.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-10DOI: 10.1016/j.susmat.2024.e01170
Tong Li , Menghang Su , Shi-Ran Li , Renbo Deng , Hui-ling Xia , Xu-Feng Zang
Many efforts have been devoted to investigate failure mechanisms of LiCoO2-based lithium-ion batteries at ≥4.55 vs. Li+/Li. However, most of these works are conducted on coin-type half-cells and rarely consider the effects of cycle time and ambient temperature on mechanisms. So, it calls an alarming demand for making clear the cyclabilities of cells at different temperatures, then differentiating the root causes for their capacity degradations. Herein, the cyclabilities of an ∼3.1 Ah commercial LiCoO2/artificial graphite pouch cell at 3–4.45 V are compared at 25 and 60 °C. It is found that the cycle lives at 25 and 60 °C are 2944 and 122 cycles, respectively. The structural variations of the cycled electrodes are systematically studied. Results reveal that the main cause for the capacity beginning to decline after 3000 cycles at 25 °C is the damage of LiCoO2 structure, while its impedance growth and other side reactions are not severe. Differently, the capacity dropping upon cycling at 60 °C is caused by the parasitic reactions including successive electrolyte decomposition, severe cobalt dissolution and Li deposition. Obviously, these findings can provide a theoretical basis for further optimizing of LiCoO2 cells.
许多人致力于研究钴酸锂基锂离子电池在≥4.55vs.Li+/Li条件下的失效机理。然而,这些研究大多针对纽扣型半电池,很少考虑循环时间和环境温度对失效机理的影响。因此,迫切需要明确电池在不同温度下的循环能力,进而区分电池容量衰减的根本原因。在此,比较了 3.1 Ah 的商用钴酸锂/人造石墨袋电池在 3-4.45 V 和 25 和 60 °C 下的循环能力。结果发现,在 25 ℃ 和 60 ℃ 下的循环寿命分别为 2944 次和 122 次。对循环电极的结构变化进行了系统研究。结果表明,在 25 ℃ 下循环 3000 次后容量开始下降的主要原因是钴酸锂结构的损坏,而其阻抗增长和其他副反应并不严重。不同的是,在 60 °C 下循环后容量下降是由寄生反应引起的,包括连续电解质分解、严重的钴溶解和锂沉积。显然,这些发现为进一步优化钴酸锂电池提供了理论依据。
{"title":"Unveiling the effect of cycle time and ambient temperature on the failure mechanisms of commercial LiCoO2/artificial graphite pouch cells","authors":"Tong Li , Menghang Su , Shi-Ran Li , Renbo Deng , Hui-ling Xia , Xu-Feng Zang","doi":"10.1016/j.susmat.2024.e01170","DOIUrl":"10.1016/j.susmat.2024.e01170","url":null,"abstract":"<div><div>Many efforts have been devoted to investigate failure mechanisms of LiCoO<sub>2</sub>-based lithium-ion batteries at ≥4.55 vs. Li<sup>+</sup>/Li. However, most of these works are conducted on coin-type half-cells and rarely consider the effects of cycle time and ambient temperature on mechanisms. So, it calls an alarming demand for making clear the cyclabilities of cells at different temperatures, then differentiating the root causes for their capacity degradations. Herein, the cyclabilities of an ∼3.1 Ah commercial LiCoO<sub>2</sub>/artificial graphite pouch cell at 3–4.45 V are compared at 25 and 60 °C. It is found that the cycle lives at 25 and 60 °C are 2944 and 122 cycles, respectively. The structural variations of the cycled electrodes are systematically studied. Results reveal that the main cause for the capacity beginning to decline after 3000 cycles at 25 °C is the damage of LiCoO<sub>2</sub> structure, while its impedance growth and other side reactions are not severe. Differently, the capacity dropping upon cycling at 60 °C is caused by the parasitic reactions including successive electrolyte decomposition, severe cobalt dissolution and Li deposition. Obviously, these findings can provide a theoretical basis for further optimizing of LiCoO<sub>2</sub> cells.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01170"},"PeriodicalIF":8.6,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is challenging to realize excellent overall properties of relaxor ferroelectrics to overcome the demands of capacitors. In this research, an effective strategy of entropy engineering addresses the above problem. The (1-x)Na0.35Bi0.35Sr0.3TiO3-xCa0.85Sm0.1(Mg1/3Nb2/3)O3 (NBST-xCSMN) ceramics were prepared via a solid-phase reaction method. The linear dielectric CSMN was adopted as additive to adjust the configuration entropy (∆Sconfig) of samples. The outcomes indicate that the enhancement of ∆Sconfig is beneficial to reduce grain size and interfacial polarization, improve activation energy and optimize dielectric features. The superior energy storage capability (Wrec = 5.2 J/cm3, η = 88 %) as well as dielectric temperature reliability (∆C/C25°C ≤ ± 15 %, −57–323 °C) in accordance with X9R was gained in NBST-0.15CSMN with ∆Sconfig = 1.91R. This study indicates that entropy engineering is a shortcut to design next-generation capacitors with high comprehensive performance.
{"title":"Outstanding energy storage properties and dielectric temperature reliability in Na0.35Bi0.35Sr0.3TiO3-based relaxor ferroelectrics through entropy engineering","authors":"Zhemin Chen, Yongping Pu, Yiting Hui, Qi Zhang, Yating Ning, Lei Zhang, Chunhui Wu","doi":"10.1016/j.susmat.2024.e01172","DOIUrl":"10.1016/j.susmat.2024.e01172","url":null,"abstract":"<div><div>It is challenging to realize excellent overall properties of relaxor ferroelectrics to overcome the demands of capacitors. In this research, an effective strategy of entropy engineering addresses the above problem. The (1-<em>x</em>)Na<sub>0.35</sub>Bi<sub>0.35</sub>Sr<sub>0.3</sub>TiO<sub>3</sub>-<em>x</em>Ca<sub>0.85</sub>Sm<sub>0.1</sub>(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub> (NBST-<em>x</em>CSMN) ceramics were prepared via a solid-phase reaction method. The linear dielectric CSMN was adopted as additive to adjust the configuration entropy (∆<em>S</em><sub>config</sub>) of samples. The outcomes indicate that the enhancement of ∆<em>S</em><sub>config</sub> is beneficial to reduce grain size and interfacial polarization, improve activation energy and optimize dielectric features. The superior energy storage capability (<em>W</em><sub>rec</sub> = 5.2 J/cm<sup>3</sup>, <em>η</em> = 88 %) as well as dielectric temperature reliability (∆<em>C</em>/<em>C</em><sub>25°C</sub> ≤ ± 15 %, −57–323 °C) in accordance with X9R was gained in NBST-0.15CSMN with ∆<em>S</em><sub>config</sub> = 1.91<em>R</em>. This study indicates that entropy engineering is a shortcut to design next-generation capacitors with high comprehensive performance.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01172"},"PeriodicalIF":8.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.susmat.2024.e01162
Araz Hasheminezhad, Halil Ceylan, Sunghwan Kim
Asphalt pavements, serving as the backbone of road networks worldwide, are crucial to transportation infrastructure. Conventional asphalt pavements have raised concerns due to their environmental impact and sustainability over time. This paper reviews emerging strategies, tools, and innovations used to promote the sustainability of asphalt pavements. It explores existing methodologies for assessing sustainability, including innovations in materials, design and construction practices, and maintenance and rehabilitation strategies. Life-cycle assessments of sustainable asphalt pavements containing innovative materials in terms of environmental impacts have been thoroughly investigated. Case studies are presented for practical applications of sustainability initiatives in asphalt pavement projects, lessons learned, and challenges encountered. The paper identifies future directions and research needs, emphasizing the importance of continued efforts to promote sustainability in asphalt pavements.
{"title":"Sustainability promotion through asphalt pavements: A review of existing tools and innovations","authors":"Araz Hasheminezhad, Halil Ceylan, Sunghwan Kim","doi":"10.1016/j.susmat.2024.e01162","DOIUrl":"10.1016/j.susmat.2024.e01162","url":null,"abstract":"<div><div>Asphalt pavements, serving as the backbone of road networks worldwide, are crucial to transportation infrastructure. Conventional asphalt pavements have raised concerns due to their environmental impact and sustainability over time. This paper reviews emerging strategies, tools, and innovations used to promote the sustainability of asphalt pavements. It explores existing methodologies for assessing sustainability, including innovations in materials, design and construction practices, and maintenance and rehabilitation strategies. Life-cycle assessments of sustainable asphalt pavements containing innovative materials in terms of environmental impacts have been thoroughly investigated. Case studies are presented for practical applications of sustainability initiatives in asphalt pavement projects, lessons learned, and challenges encountered. The paper identifies future directions and research needs, emphasizing the importance of continued efforts to promote sustainability in asphalt pavements.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01162"},"PeriodicalIF":8.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In contrast to conventional nanostructured photocatalysts that only catalyze the conversion of CO2 into C1 compounds of CO and CH3OH, in this study, the Bi2WO6 nanosheets are deliberately grown to form a unique vertical configuration for achieving superior photocatalytic CO2 conversion in the production of additional C2/C3 hydrocarbons, such as HCOOCH3, CH3CHO, and CH3COCH3. These products can serve as high-caloric-value fuels and chemical feedstocks, contributing to sustainability by potentially replacing fossil fuels. The vertical Bi2WO6 nanosheets predominantly expose (010) crystal planes to the CO2 atmosphere. By modifying the nanosheet to display a jagged porous feature that exposes a higher proportion of edge surfaces perpendicular to the main exposure faces, the resulting vertical porous Bi2WO6 nanosheets catalyze the formation of additional hydrocarbons, including CH4 and CH3CH2CHO. This enhancement further strengthens the sustainability merit of this photocatalytic process. To support these experimental findings, density functional theory calculations verify the enhanced photocatalytic activity of a characteristic edge face, the Bi2WO6 (100) plane, compared to the Bi2WO6 (010) plane in the conversion of CO2 and H2O into hydrocarbons requiring multielectron transfer. This study highlights the effectiveness of the vertical Bi2WO6 nanosheets, primarily featuring exposed (010) crystal planes along with additional exposed edge faces, in promoting sustainable CO2 conversion reactions for the production of C2/C3 hydrocarbons involving multielectron transfer processes.
传统的纳米结构光催化剂只能催化 CO2 转化为 CO 和 CH3OH 的 C1 化合物,与此不同的是,在本研究中,Bi2WO6 纳米片经过特意生长,形成了独特的垂直结构,从而在生产额外的 C2/C3 碳氢化合物(如 HCOOCH3、CH3CHO 和 CH3COCH3)过程中实现了卓越的光催化 CO2 转化。这些产品可作为高热值燃料和化学原料,通过替代化石燃料为可持续发展做出贡献。垂直的 Bi2WO6 纳米片主要将 (010) 晶面暴露在二氧化碳环境中。通过对纳米片进行改性,使其呈现锯齿状多孔特征,从而暴露出更多垂直于主要暴露面的边缘表面,由此产生的垂直多孔 Bi2WO6 纳米片可催化形成更多碳氢化合物,包括 CH4 和 CH3CH2CHO。这种提高进一步加强了这种光催化过程的可持续性优势。为支持这些实验结果,密度泛函理论计算证实,在将 CO2 和 H2O 转化为需要多电子转移的碳氢化合物的过程中,与 Bi2WO6 (010) 面相比,Bi2WO6 (100) 面这一特征边缘面的光催化活性得到了增强。这项研究强调了垂直 Bi2WO6 纳米片在促进涉及多电子转移过程的 C2/C3 碳氢化合物生产的可持续 CO2 转化反应中的有效性,这种纳米片主要以暴露的 (010) 晶面和其他暴露的边缘面为特征。
{"title":"Formation of C2 and C3 hydrocarbons through photocatalytic CO2 conversion on vertical Bi2WO6 nanosheets","authors":"Chia-Ju Lee , Rajneesh Chaurasiya , Jen-Sue Chen , Jih-Jen Wu","doi":"10.1016/j.susmat.2024.e01171","DOIUrl":"10.1016/j.susmat.2024.e01171","url":null,"abstract":"<div><div>In contrast to conventional nanostructured photocatalysts that only catalyze the conversion of CO<sub>2</sub> into C1 compounds of CO and CH<sub>3</sub>OH, in this study, the Bi<sub>2</sub>WO<sub>6</sub> nanosheets are deliberately grown to form a unique vertical configuration for achieving superior photocatalytic CO<sub>2</sub> conversion in the production of additional C2/C3 hydrocarbons, such as HCOOCH<sub>3</sub>, CH<sub>3</sub>CHO, and CH<sub>3</sub>COCH<sub>3</sub>. These products can serve as high-caloric-value fuels and chemical feedstocks, contributing to sustainability by potentially replacing fossil fuels. The vertical Bi<sub>2</sub>WO<sub>6</sub> nanosheets predominantly expose (010) crystal planes to the CO<sub>2</sub> atmosphere. By modifying the nanosheet to display a jagged porous feature that exposes a higher proportion of edge surfaces perpendicular to the main exposure faces, the resulting vertical porous Bi<sub>2</sub>WO<sub>6</sub> nanosheets catalyze the formation of additional hydrocarbons, including CH<sub>4</sub> and CH<sub>3</sub>CH<sub>2</sub>CHO. This enhancement further strengthens the sustainability merit of this photocatalytic process. To support these experimental findings, density functional theory calculations verify the enhanced photocatalytic activity of a characteristic edge face, the Bi<sub>2</sub>WO<sub>6</sub> (100) plane, compared to the Bi<sub>2</sub>WO<sub>6</sub> (010) plane in the conversion of CO<sub>2</sub> and H<sub>2</sub>O into hydrocarbons requiring multielectron transfer. This study highlights the effectiveness of the vertical Bi<sub>2</sub>WO<sub>6</sub> nanosheets, primarily featuring exposed (010) crystal planes along with additional exposed edge faces, in promoting sustainable CO<sub>2</sub> conversion reactions for the production of C2/C3 hydrocarbons involving multielectron transfer processes.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01171"},"PeriodicalIF":8.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.susmat.2024.e01169
Tiancheng Liu, Jiwang Jiang, Chunhan Gong
Bitumen emulsion cold mixing (BE-CM) technology is characterized by its environmental friendliness, resource conservation, and ease of construction. It plays a significant leading role in addressing the sustainability challenges in the highway transportation sector and has become a research hotspot in recent years. However, due to the presence of emulsifiers and moisture, the ionic environment of the solution components is complex. Currently, the moisture migration patterns within BE-CM mixtures and its effects on the micro-interface and macro-performance of BE-CM mixtures remain insufficiently understood. This has limited the widespread application of BE-CM technology. To further promote the development of BE-CM technology, this paper, based on bibliometric analysis, reviews and discusses the following three aspects: multi-scale characterization and modeling of moisture effects, adsorption and adhesion behavior at the bitumen emulsion-aggregate interface, and macroscopic performance enhancement of BE-CM mixtures. Additionally, several recommendations are provided to guide future research.
{"title":"Micro-interface dynamics and macro-performance improvement in bitumen emulsion cold mixing for sustainable pavements: A critical review of moisture's impact","authors":"Tiancheng Liu, Jiwang Jiang, Chunhan Gong","doi":"10.1016/j.susmat.2024.e01169","DOIUrl":"10.1016/j.susmat.2024.e01169","url":null,"abstract":"<div><div>Bitumen emulsion cold mixing (BE-CM) technology is characterized by its environmental friendliness, resource conservation, and ease of construction. It plays a significant leading role in addressing the sustainability challenges in the highway transportation sector and has become a research hotspot in recent years. However, due to the presence of emulsifiers and moisture, the ionic environment of the solution components is complex. Currently, the moisture migration patterns within BE-CM mixtures and its effects on the micro-interface and macro-performance of BE-CM mixtures remain insufficiently understood. This has limited the widespread application of BE-CM technology. To further promote the development of BE-CM technology, this paper, based on bibliometric analysis, reviews and discusses the following three aspects: multi-scale characterization and modeling of moisture effects, adsorption and adhesion behavior at the bitumen emulsion-aggregate interface, and macroscopic performance enhancement of BE-CM mixtures. Additionally, several recommendations are provided to guide future research.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01169"},"PeriodicalIF":8.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}