A first look at the formation of PEO-PDA coatings on 3D titanium

{"title":"A first look at the formation of PEO-PDA coatings on 3D titanium","authors":"","doi":"10.1016/j.chphma.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing has revolutionized implantology by enabling the fabrication of customized, highly porous implants. Surface modifications using electrochemical methods can significantly enhance the bioactivity and biocompatibility of biomaterials, including 3D-printed implants. This study investigates novel coatings on 3D titanium (Ti) samples. Mesh Ti samples were designed and subjected to plasma electrolytic oxidation (PEO) to form a calcium phosphate coating. Subsequently, a layer of polydopamine (PDA) was applied. The electrochemical properties and morphology of the coatings were analyzed. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) revealed well-developed coatings containing calcium phosphates (including hydroxyapatite), titanium dioxide, and polymerized dopamine, suggesting promising bioactive potential. Composite layers incorporating PDA exhibited superior protective properties compared to base PEO coatings.</div></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571524000408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing has revolutionized implantology by enabling the fabrication of customized, highly porous implants. Surface modifications using electrochemical methods can significantly enhance the bioactivity and biocompatibility of biomaterials, including 3D-printed implants. This study investigates novel coatings on 3D titanium (Ti) samples. Mesh Ti samples were designed and subjected to plasma electrolytic oxidation (PEO) to form a calcium phosphate coating. Subsequently, a layer of polydopamine (PDA) was applied. The electrochemical properties and morphology of the coatings were analyzed. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) revealed well-developed coatings containing calcium phosphates (including hydroxyapatite), titanium dioxide, and polymerized dopamine, suggesting promising bioactive potential. Composite layers incorporating PDA exhibited superior protective properties compared to base PEO coatings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维钛上 PEO-PDA 涂层的形成初探
增材制造技术通过制造定制化、高多孔性植入体,为植入学带来了革命性的变化。使用电化学方法进行表面改性可显著提高生物材料(包括三维打印植入物)的生物活性和生物相容性。本研究调查了三维钛(Ti)样品上的新型涂层。设计了网状钛样品,并对其进行等离子电解氧化(PEO)以形成磷酸钙涂层。随后,涂上一层聚多巴胺(PDA)。对涂层的电化学特性和形态进行了分析。扫描电子显微镜(SEM)和能量色散 X 射线光谱(EDS)显示,涂层发育良好,含有磷酸钙(包括羟基磷灰石)、二氧化钛和聚合多巴胺,具有良好的生物活性潜力。与基础 PEO 涂层相比,含有 PDA 的复合层具有更优越的保护性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Detection of a glass fiber-reinforced polymer with defects by terahertz computed tomography Anisotropic etching of 2D layered materials A first look at the formation of PEO-PDA coatings on 3D titanium Theoretical study on the efficiency of new organic dyes based on (E)-2-(2-(thiophen-3-yl)vinyl)-1,1′-bipyrrole as dye-sensitized solar cell sensitizers Swollen hydrogel nanotechnology: Advanced applications of the rudimentary swelling properties of hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1