I Gede Eka Sulistyawan , Daisuke Nishimae , Takuro Ishii , Yoshifumi Saijo
{"title":"Singular value decomposition with weighting matrix applied for optical-resolution photoacoustic microscopes","authors":"I Gede Eka Sulistyawan , Daisuke Nishimae , Takuro Ishii , Yoshifumi Saijo","doi":"10.1016/j.ultras.2024.107424","DOIUrl":null,"url":null,"abstract":"<div><p>The prestige target selectivity and imaging depth of optical-resolution photoacoustic microscope (OR-PAM) have gained attentions to enable advanced intra-cellular visualizations. However, the broad-band nature of photoacoustic signals is prone to noise and artifacts caused by the inefficient light-to-pressure translation, resulting in poor image quality. The present study foresees application of singular value decomposition (SVD) to effectively extract the photoacoustic signals from these noise and artifacts. Although spatiotemporal SVD succeeded in ultrasound flow signal extraction, the conventional multi frame model is not suitable for data acquired with scanning OR-PAM due to the burden of accessing multiple frames. To utilize SVD on the OR-PAM, this study began with exploring SVD applied on multiple A-lines of photoacoustic signal instead of frames. Upon explorations, an obstacle of uncertain presence of unwanted singular vectors was observed. To tackle this, a data-driven weighting matrix was designed to extract relevant singular vectors based on the analyses of temporal-spatial singular vectors. Evaluation on the extraction capability by the SVD with the weighting matrix showed a superior signal quality with efficient computation against past studies. In summary, this study contributes to the field by providing exploration of SVD applied on A-line signals as well as its practical utilization to distinguish and recover photoacoustic signals from noise and artifact components.</p></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"143 ","pages":"Article 107424"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0041624X24001872/pdfft?md5=7f439139dff7be3216fa4a8edc2c0972&pid=1-s2.0-S0041624X24001872-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24001872","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The prestige target selectivity and imaging depth of optical-resolution photoacoustic microscope (OR-PAM) have gained attentions to enable advanced intra-cellular visualizations. However, the broad-band nature of photoacoustic signals is prone to noise and artifacts caused by the inefficient light-to-pressure translation, resulting in poor image quality. The present study foresees application of singular value decomposition (SVD) to effectively extract the photoacoustic signals from these noise and artifacts. Although spatiotemporal SVD succeeded in ultrasound flow signal extraction, the conventional multi frame model is not suitable for data acquired with scanning OR-PAM due to the burden of accessing multiple frames. To utilize SVD on the OR-PAM, this study began with exploring SVD applied on multiple A-lines of photoacoustic signal instead of frames. Upon explorations, an obstacle of uncertain presence of unwanted singular vectors was observed. To tackle this, a data-driven weighting matrix was designed to extract relevant singular vectors based on the analyses of temporal-spatial singular vectors. Evaluation on the extraction capability by the SVD with the weighting matrix showed a superior signal quality with efficient computation against past studies. In summary, this study contributes to the field by providing exploration of SVD applied on A-line signals as well as its practical utilization to distinguish and recover photoacoustic signals from noise and artifact components.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.