Mixed-matrix membrane designed with water channels and sieving effect for effective removal of heavy metals

Savita Akale, Irfan N. Shaikh
{"title":"Mixed-matrix membrane designed with water channels and sieving effect for effective removal of heavy metals","authors":"Savita Akale,&nbsp;Irfan N. Shaikh","doi":"10.1016/j.enmm.2024.100985","DOIUrl":null,"url":null,"abstract":"<div><p>The challenge of eliminating heavy metal ions from water has been addressed using Polysulfone (PSf) membranes, which have demonstrated significant potential in treating contaminated solutions. This research aimed to improve the permeability and separation performance of PSf membranes by incorporating Al<sub>2</sub>SiO<sub>6</sub> into their structure. The introduction of Al<sub>2</sub>SiO<sub>6</sub> into the membrane matrix was achieved through the nonsolvent-induced phase separation (NIPS). The resulting mixed-matrix membrane (MMM) exhibited improved efficiency in water filtration. The inclusion of Al<sub>2</sub>SiO<sub>6</sub> led to desirable changes in membrane properties such as hydrophilicity, contact angle and porosity, thereby enhancing the performance of heavy metal ion removal capability. Under a pressure of 2 bar, the mixed matrix membranes achieved rejections exceeding 95 % for lead and 70 % for arsenic. Furthermore, the occurrence of Al<sub>2</sub>SiO<sub>6</sub> enhanced the anti-fouling assets of the PSf membrane by increasing its hydrophilic nature and facilitating the development of a hydration layer, which tends to prevent the interactions between the membrane surface and foulant. These properties make these membranes suitable candidates for separating toxic ions from water.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 100985"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224000734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of eliminating heavy metal ions from water has been addressed using Polysulfone (PSf) membranes, which have demonstrated significant potential in treating contaminated solutions. This research aimed to improve the permeability and separation performance of PSf membranes by incorporating Al2SiO6 into their structure. The introduction of Al2SiO6 into the membrane matrix was achieved through the nonsolvent-induced phase separation (NIPS). The resulting mixed-matrix membrane (MMM) exhibited improved efficiency in water filtration. The inclusion of Al2SiO6 led to desirable changes in membrane properties such as hydrophilicity, contact angle and porosity, thereby enhancing the performance of heavy metal ion removal capability. Under a pressure of 2 bar, the mixed matrix membranes achieved rejections exceeding 95 % for lead and 70 % for arsenic. Furthermore, the occurrence of Al2SiO6 enhanced the anti-fouling assets of the PSf membrane by increasing its hydrophilic nature and facilitating the development of a hydration layer, which tends to prevent the interactions between the membrane surface and foulant. These properties make these membranes suitable candidates for separating toxic ions from water.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合基质膜具有水通道和筛分效果,可有效去除重金属
利用聚砜(PSf)膜消除水中重金属离子是一项挑战,这种膜在处理受污染溶液方面具有巨大潜力。这项研究旨在通过在 PSf 膜的结构中加入 Al2SiO6 来提高其渗透性和分离性能。通过非溶剂诱导相分离(NIPS)将 Al2SiO6 引入膜基质。由此产生的混合基质膜(MMM)提高了水过滤效率。Al2SiO6 的加入使膜的亲水性、接触角和孔隙率等性能发生了理想的变化,从而提高了重金属离子的去除能力。在 2 巴的压力下,混合基质膜的铅去除率超过 95%,砷去除率超过 70%。此外,Al2SiO6 的出现增强了 PSf 膜的防污能力,因为它增加了膜的亲水性,促进了水合层的形成,从而防止了膜表面与污物之间的相互作用。这些特性使这些膜成为从水中分离有毒离子的合适选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
期刊最新文献
A comprehensive overview of polymeric nanocomposites for environmental pollution mitigation: Assessing health risks and applications Enhanced cationic/anionic dyes removal in wastewater by green nanocomposites synthesized from acid-modified biomass and CuFe2O4 nanoparticles: Mechanism, Taguchi optimization and toxicity evaluation Adsorption of tetracycline from an aqueous solution on a CaMgAl-layer double hydroxide/red mud composite: Kinetic, isotherm, and thermodynamic studies Competent CuS QDs@Fe MIL101 heterojunction for Sunlight-driven degradation of pharmaceutical contaminants from wastewater Disinfection of synthetic human urine by mixed metal oxide anode through photo/electrochemical oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1