Cheng Chen, Yifan Tang, Wenbo Ren, Yi Wang, Jianzhong Guo, Shuyu Lin
{"title":"Acoustic black hole ultrasonic scalpel","authors":"Cheng Chen, Yifan Tang, Wenbo Ren, Yi Wang, Jianzhong Guo, Shuyu Lin","doi":"10.1016/j.ultras.2024.107417","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasonic scalpels (USs), as the preferred energy instruments, are facing a growing need to exhibit enhanced performance with the diversification of modern surgical challenges. Hence, we proposed an acoustic black hole ultrasonic scalpel (ABHUS) in longitudinal-bending coupled vibration for efficient surgical cutting. By incorporating an acoustic black hole profile, the local bending wave velocity is reduced and the amplitude is amplified cumulatively, thus creating a high-energy region near the blade tip to enhance the cutting performance of the ABHUS. The precise physical analysis model is established for systematic design of the ABHUS and quick estimation of its frequency characteristics. The vibration simulation and experiments demonstrate that compared with the conventional ultrasonic scalpel (CUS), the output amplitude of the ABHUS significantly increases, particularly a 425% increase in bending vibration displacement. The in-vitro cutting experiment confirms that ABHUS exhibits superior cutting performance. Our design presents vast possibilities and potential for the development of high-performance ultrasonic surgical instruments, serving as an innovative supplement with extraordinary significance for application of acoustic black holes.</p></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"143 ","pages":"Article 107417"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X2400180X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasonic scalpels (USs), as the preferred energy instruments, are facing a growing need to exhibit enhanced performance with the diversification of modern surgical challenges. Hence, we proposed an acoustic black hole ultrasonic scalpel (ABHUS) in longitudinal-bending coupled vibration for efficient surgical cutting. By incorporating an acoustic black hole profile, the local bending wave velocity is reduced and the amplitude is amplified cumulatively, thus creating a high-energy region near the blade tip to enhance the cutting performance of the ABHUS. The precise physical analysis model is established for systematic design of the ABHUS and quick estimation of its frequency characteristics. The vibration simulation and experiments demonstrate that compared with the conventional ultrasonic scalpel (CUS), the output amplitude of the ABHUS significantly increases, particularly a 425% increase in bending vibration displacement. The in-vitro cutting experiment confirms that ABHUS exhibits superior cutting performance. Our design presents vast possibilities and potential for the development of high-performance ultrasonic surgical instruments, serving as an innovative supplement with extraordinary significance for application of acoustic black holes.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.