Model-less multi-input analysis of pulmonary blood flow using deep learning convolution

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS IFAC Journal of Systems and Control Pub Date : 2024-07-20 DOI:10.1016/j.ifacsc.2024.100276
Tomoki Saka , Tae Iwasawa , Marcos S.G. Tsuzuki
{"title":"Model-less multi-input analysis of pulmonary blood flow using deep learning convolution","authors":"Tomoki Saka ,&nbsp;Tae Iwasawa ,&nbsp;Marcos S.G. Tsuzuki","doi":"10.1016/j.ifacsc.2024.100276","DOIUrl":null,"url":null,"abstract":"<div><p>The study investigates two categories of perfusion-based pulmonary blood flow analysis: model-based and model-less methods. The model-based approach yields plausible results, but requires strict parameter settings and presents challenges in handling. On the other hand, the model-less approach is simpler but limited to a single input analysis, necessitating an inverse problem to estimate the impulse response from input–output relationships. To overcome these limitations, this article proposes a model-less method that combines simplicity and accuracy, enabling multi-input system analysis and aiming for standardized analysis. They leverage deep learning convolution to directly estimate the impulse response, allowing for multi-input analysis. Comparative experiments demonstrate that the proposed method is easy to implement and exhibits a low estimation error within the measured signal-to-noise ratio (SNR) range, even though it is sensitive to noise. Furthermore, the proposed method is evaluated through waveform analysis, specifically Delay and Dispersion in Experiment 1, where it is compared with conventional methods. In Experiment 2, blood flow analysis is performed on a patient with a defect in the left pulmonary artery. The results indicate high convergence, independence from input waveforms, and effective analysis of cases with vascular stenosis. Moreover, the method enables multi-input system analysis, consistently yielding results consistent with medical findings, even for patients with left pulmonary artery defects.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"29 ","pages":"Article 100276"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigates two categories of perfusion-based pulmonary blood flow analysis: model-based and model-less methods. The model-based approach yields plausible results, but requires strict parameter settings and presents challenges in handling. On the other hand, the model-less approach is simpler but limited to a single input analysis, necessitating an inverse problem to estimate the impulse response from input–output relationships. To overcome these limitations, this article proposes a model-less method that combines simplicity and accuracy, enabling multi-input system analysis and aiming for standardized analysis. They leverage deep learning convolution to directly estimate the impulse response, allowing for multi-input analysis. Comparative experiments demonstrate that the proposed method is easy to implement and exhibits a low estimation error within the measured signal-to-noise ratio (SNR) range, even though it is sensitive to noise. Furthermore, the proposed method is evaluated through waveform analysis, specifically Delay and Dispersion in Experiment 1, where it is compared with conventional methods. In Experiment 2, blood flow analysis is performed on a patient with a defect in the left pulmonary artery. The results indicate high convergence, independence from input waveforms, and effective analysis of cases with vascular stenosis. Moreover, the method enables multi-input system analysis, consistently yielding results consistent with medical findings, even for patients with left pulmonary artery defects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习卷积对肺血流进行无模型多输入分析
研究调查了两类基于灌注的肺血流分析方法:基于模型的方法和无模型方法。基于模型的方法结果可信,但需要严格的参数设置,在处理上存在挑战。另一方面,无模型方法较为简单,但仅限于单一输入分析,需要解决反问题,从输入-输出关系中估计脉冲响应。为了克服这些局限性,本文提出了一种无模型方法,该方法兼具简便性和准确性,可进行多输入系统分析,旨在实现标准化分析。他们利用深度学习卷积直接估计脉冲响应,从而实现多输入分析。对比实验证明,所提出的方法易于实施,在测量的信噪比(SNR)范围内显示出较低的估计误差,尽管它对噪声很敏感。此外,在实验 1 中,通过波形分析,特别是延迟和频散,对所提出的方法进行了评估,并与传统方法进行了比较。在实验 2 中,对一名左肺动脉缺损的患者进行了血流分析。结果表明,该方法收敛性高,不受输入波形的影响,能有效分析血管狭窄的病例。此外,该方法还能进行多输入系统分析,即使是对左肺动脉缺损的患者,也能得出与医学结论一致的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
期刊最新文献
On the turnpike to design of deep neural networks: Explicit depth bounds Finite-time event-triggered tracking control for quadcopter attitude systems with zero compensation technology Efficiency criteria and dual techniques for some nonconvex multiple cost minimization models Analysis of Hyers–Ulam stability and controllability of non-linear switched impulsive systems with delays on time scales Design of fixed-time sliding mode control using variable exponents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1