Tanja Frank , Dirk-Alexander Becker , Steven Benbow , Alexander Bond , Richard Jayne , Tara LaForce , Jens Wolf
{"title":"Value of abstraction in performance assessment – When is a higher level of detail necessary?","authors":"Tanja Frank , Dirk-Alexander Becker , Steven Benbow , Alexander Bond , Richard Jayne , Tara LaForce , Jens Wolf","doi":"10.1016/j.gete.2024.100577","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, different approaches in performance assessment (PA) of the long-term safety of a repository for radioactive waste were examined. This investigation was carried out as part of the DECOVALEX-2023 project, an international collaborative effort for research and model comparison. One specific task of the DECOVALEX-2023 project was the Salt Performance Assessment Modelling task (Salt PA), which aimed at comparing various models and methods employed in the performance assessment of deep geological repositories in salt. In the context of the Salt PA task, three distinct teams from SNL (United States), Quintessa Ltd (United Kingdom), and GRS (Germany) examined the consequences of employing different levels of abstractions when modelling the repository's geometry and implementing various features and processes, using the example of a simple hypothetical repository structure in domal salt. Each team applied their own tools: PFLOTRAN (SNL), QPAC (Quintessa) and LOPOS (GRS). These differ essentially regarding numerical concept and degree of detail in the representation of the underlying physical processes. The discussion focused on when simplifications can be appropriately applied and what consequences result from them. Furthermore, it was explored when and if a higher level of fidelity in geometry or physical processes is required.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"39 ","pages":"Article 100577"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380824000443/pdfft?md5=fa97eb270f415e2bf6ae00e97f687ef4&pid=1-s2.0-S2352380824000443-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000443","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, different approaches in performance assessment (PA) of the long-term safety of a repository for radioactive waste were examined. This investigation was carried out as part of the DECOVALEX-2023 project, an international collaborative effort for research and model comparison. One specific task of the DECOVALEX-2023 project was the Salt Performance Assessment Modelling task (Salt PA), which aimed at comparing various models and methods employed in the performance assessment of deep geological repositories in salt. In the context of the Salt PA task, three distinct teams from SNL (United States), Quintessa Ltd (United Kingdom), and GRS (Germany) examined the consequences of employing different levels of abstractions when modelling the repository's geometry and implementing various features and processes, using the example of a simple hypothetical repository structure in domal salt. Each team applied their own tools: PFLOTRAN (SNL), QPAC (Quintessa) and LOPOS (GRS). These differ essentially regarding numerical concept and degree of detail in the representation of the underlying physical processes. The discussion focused on when simplifications can be appropriately applied and what consequences result from them. Furthermore, it was explored when and if a higher level of fidelity in geometry or physical processes is required.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.