{"title":"60 years of surface structure determination","authors":"D.Phil Woodruff","doi":"10.1016/j.susc.2024.122552","DOIUrl":null,"url":null,"abstract":"<div><p>A brief review is presented of the development and application of quantitative structural studies of surfaces in the last 60 years. The development of the earliest method, and the one that remains the benchmark technique, namely quantitative low energy electron diffraction (QLEED) is described, and its underlying methodology compared with alternative techniques that have emerged subsequently. In particular, the role of scanning tunnelling microscopy (STM) and density functional theory (DFT), a combination of methods that has typified many more recent surface structural studies, is compared and contrasted with ‘traditional’ quantitative experimental methods such as QLEED.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"749 ","pages":"Article 122552"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001031/pdfft?md5=0eb96ac83d02e2ec5468e287adb20777&pid=1-s2.0-S0039602824001031-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001031","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A brief review is presented of the development and application of quantitative structural studies of surfaces in the last 60 years. The development of the earliest method, and the one that remains the benchmark technique, namely quantitative low energy electron diffraction (QLEED) is described, and its underlying methodology compared with alternative techniques that have emerged subsequently. In particular, the role of scanning tunnelling microscopy (STM) and density functional theory (DFT), a combination of methods that has typified many more recent surface structural studies, is compared and contrasted with ‘traditional’ quantitative experimental methods such as QLEED.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.