Further investigation of spatially resolved single grain quartz OSL and TL signals

IF 1.6 3区 物理与天体物理 Q2 NUCLEAR SCIENCE & TECHNOLOGY Radiation Measurements Pub Date : 2024-07-26 DOI:10.1016/j.radmeas.2024.107260
Julie A. Durcan , Geoff A.T. Duller
{"title":"Further investigation of spatially resolved single grain quartz OSL and TL signals","authors":"Julie A. Durcan ,&nbsp;Geoff A.T. Duller","doi":"10.1016/j.radmeas.2024.107260","DOIUrl":null,"url":null,"abstract":"<div><p>The use of luminescence signals from single mineral grains for optical dating has become a valuable and frequently utilised tool in Quaternary Geochronology. Single grain luminescence dating is particularly beneficial in complex depositional settings, however the ability to measure single grain signals also offers the opportunity to assess intrinsic luminescence properties of individual mineral grains. The use of spatially resolved luminescence technologies such as an electron multiplier charge coupled device is of benefit when making luminescence measurements at single grain scales because they allow stimulation with light emitting diodes, and this offers a number of key benefits related to stimulation power when it comes to the assessment of characteristics such as optically stimulated luminescence (OSL) decay rate and the calculation of parameters such as the fast ratio and photo ionisation cross-sections. In this paper, the intra- and inter-sample variability of sensitised single grain thermoluminescence (TL) and OSL signals is considered. A comparison between TL and OSL signals is undertaken, as well as calculation of the fast ratio, OSL component photo ionisation cross-sections, thermal stability, and characteristic dose for a suite of quartz samples from a range of geographic locations and depositional settings. For these heated signals, key findings include the lack of relationship between OSL signal intensity and dominance of the fast component, the fitting of two components (a fast and slow component) is the most common fit for single grain OSL signals, characteristic doses from fast dominated signals suggesting saturation at c. 150 Gy, and the identification of the ultrafast OSL component. Intra-sample variability across all measured parameters is observed, suggesting that for this suite of samples, variability is the norm rather than the exception, and that the intrinsic luminescence characteristics of quartz are variable and diverse.</p></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350448724002087/pdfft?md5=d537d6bc23eb118478e65fc6719dc549&pid=1-s2.0-S1350448724002087-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724002087","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of luminescence signals from single mineral grains for optical dating has become a valuable and frequently utilised tool in Quaternary Geochronology. Single grain luminescence dating is particularly beneficial in complex depositional settings, however the ability to measure single grain signals also offers the opportunity to assess intrinsic luminescence properties of individual mineral grains. The use of spatially resolved luminescence technologies such as an electron multiplier charge coupled device is of benefit when making luminescence measurements at single grain scales because they allow stimulation with light emitting diodes, and this offers a number of key benefits related to stimulation power when it comes to the assessment of characteristics such as optically stimulated luminescence (OSL) decay rate and the calculation of parameters such as the fast ratio and photo ionisation cross-sections. In this paper, the intra- and inter-sample variability of sensitised single grain thermoluminescence (TL) and OSL signals is considered. A comparison between TL and OSL signals is undertaken, as well as calculation of the fast ratio, OSL component photo ionisation cross-sections, thermal stability, and characteristic dose for a suite of quartz samples from a range of geographic locations and depositional settings. For these heated signals, key findings include the lack of relationship between OSL signal intensity and dominance of the fast component, the fitting of two components (a fast and slow component) is the most common fit for single grain OSL signals, characteristic doses from fast dominated signals suggesting saturation at c. 150 Gy, and the identification of the ultrafast OSL component. Intra-sample variability across all measured parameters is observed, suggesting that for this suite of samples, variability is the norm rather than the exception, and that the intrinsic luminescence characteristics of quartz are variable and diverse.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进一步研究空间分辨的单颗粒石英 OSL 和 TL 信号
利用单个矿粒的发光信号进行光学测年已成为第四纪地质年代学中一种有价值且经常使用的工具。在复杂的沉积环境中,单个矿粒的发光测年尤其有用,不过测量单个矿粒信号的能力也为评估单个矿粒的内在发光特性提供了机会。使用空间分辨发光技术(如电子倍增电荷耦合器件)进行单颗粒尺度的发光测量非常有益,因为它们允许使用发光二极管进行激发,在评估光激发发光(OSL)衰减率等特征以及计算快比和光电离截面等参数时,这提供了与激发功率相关的许多关键优势。本文考虑了敏化单晶热致发光(TL)和 OSL 信号在样品内和样品间的可变性。本文对 TL 和 OSL 信号进行了比较,并计算了来自不同地理位置和沉积环境的一系列石英样品的快速比、OSL 成分光电离截面、热稳定性和特征剂量。对于这些加热信号,主要发现包括:OSL 信号强度与快速分量的主导地位之间缺乏关系;两个分量(快速分量和慢速分量)的拟合是单颗粒 OSL 信号最常见的拟合;快速主导信号的特征剂量表明在约 150 Gy 时达到饱和;以及超快 OSL 分量的识别。在所有测量参数中都观察到了样品内部的可变性,这表明对于这组样品来说,可变性是常态而不是例外,而且石英的内在发光特性是可变和多样的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiation Measurements
Radiation Measurements 工程技术-核科学技术
CiteScore
4.10
自引率
20.00%
发文量
116
审稿时长
48 days
期刊介绍: The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal. Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.
期刊最新文献
Accumulation of oxygen interstitial-vacancy pairs under irradiation of corundum single crystals with energetic xenon ions Gel dosimetry: An overview of dosimetry systems and read out methods Evaluation of a portable OSL/IRSL reader for radiation dose assessment of NaCl pellets – In situ individualised screening during R/N emergencies Contributions of cosmic-ray components to the HPGe gamma spectrometer background spectrum within the 0°–45° Zenith angle range Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1