Study on the wear characteristics of a 3D printed tool in flat lapping of Al2O3 ceramic materials

IF 5.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Wear Pub Date : 2024-07-26 DOI:10.1016/j.wear.2024.205515
{"title":"Study on the wear characteristics of a 3D printed tool in flat lapping of Al2O3 ceramic materials","authors":"","doi":"10.1016/j.wear.2024.205515","DOIUrl":null,"url":null,"abstract":"<div><p>Widespread and popular use of ceramic products in various industry sectors necessitates the search for methods of their efficient processing. Lapping technology, which enables obtaining high dimensional and shape accuracy and high surface flatness, is one of the basic methods of finishing hard and brittle technical ceramics with a porous structure. This study analyzed the characteristics and wear value of an SLS-printed abrasive tool intended for single-sided lapping of Al<sub>2</sub>O<sub>3</sub> technical ceramics. As earlier research demonstrated, introduction of a 3D printed lapping plate by selective laser sintering (SLS), leads to a significant development in the field of precision machining technology. This method showed not only efficient machining performance on oxide technical materials, but was also characterized by relatively low abrasive wear. Straightness errors were evaluated with the use of a least-squares method (LSQ) and minimum zone method based on control line rotation scheme (CLRS). The proposed model proved the experimental results by identifying a similar location of a higher contact density on the lapping tool, where this location is expected to be the one for bigger wear. Surface topography of the lapping tool depends on the tool wear intensity and as a consequence on its shape error. An SLS-printed lapping plate, by obtaining good technological effects, revealed its potential ability in machining hard and brittle technical ceramics.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0043164824002801/pdfft?md5=6f52bf519199631cbcdb0835a27fa029&pid=1-s2.0-S0043164824002801-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824002801","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Widespread and popular use of ceramic products in various industry sectors necessitates the search for methods of their efficient processing. Lapping technology, which enables obtaining high dimensional and shape accuracy and high surface flatness, is one of the basic methods of finishing hard and brittle technical ceramics with a porous structure. This study analyzed the characteristics and wear value of an SLS-printed abrasive tool intended for single-sided lapping of Al2O3 technical ceramics. As earlier research demonstrated, introduction of a 3D printed lapping plate by selective laser sintering (SLS), leads to a significant development in the field of precision machining technology. This method showed not only efficient machining performance on oxide technical materials, but was also characterized by relatively low abrasive wear. Straightness errors were evaluated with the use of a least-squares method (LSQ) and minimum zone method based on control line rotation scheme (CLRS). The proposed model proved the experimental results by identifying a similar location of a higher contact density on the lapping tool, where this location is expected to be the one for bigger wear. Surface topography of the lapping tool depends on the tool wear intensity and as a consequence on its shape error. An SLS-printed lapping plate, by obtaining good technological effects, revealed its potential ability in machining hard and brittle technical ceramics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维打印工具在 Al2O3 陶瓷材料平面研磨中的磨损特性研究
陶瓷产品在各行各业的广泛和普遍使用,要求我们必须找到有效的加工方法。研磨技术可以获得较高的尺寸和形状精度以及较高的表面平整度,是加工具有多孔结构的硬脆技术陶瓷的基本方法之一。本研究分析了用于单面研磨 Al2O3 技术陶瓷的 SLS 印刷研磨工具的特性和磨损值。早前的研究表明,通过选择性激光烧结(SLS)技术引入三维打印研磨板,将极大地推动精密加工技术的发展。这种方法不仅对氧化物技术材料具有高效的加工性能,而且磨料磨损相对较低。使用最小二乘法(LSQ)和基于控制线旋转方案(CLRS)的最小区域法对直线度误差进行了评估。通过确定研磨工具上接触密度较高的类似位置,所提出的模型证明了实验结果,预计该位置的磨损较大。研磨工具的表面形貌取决于工具的磨损强度,因此也取决于其形状误差。SLS 印刷研磨板获得了良好的技术效果,显示了其在加工硬脆技术陶瓷方面的潜在能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wear
Wear 工程技术-材料科学:综合
CiteScore
8.80
自引率
8.00%
发文量
280
审稿时长
47 days
期刊介绍: Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.
期刊最新文献
Tribo-oxidation mechanism of gradient nanostructured Inconel 625 alloy during high-temperature wear Synergetic enhancement of wear resistance of polyimide coatings through the integration of MoS2 nanoflowers and MXene nanosheets Improved corrosion resistance and tribological properties of MXene/NCDs coatings on the Ti6Al4V alloys Mechanism analysis and prediction of bull-nose cutter wear in multi-axis milling of Ti6Al4V with TiAlN coated inserts Evaluating the impact of corrosion inhibitors on grinding process efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1