Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide

IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR 结构化学 Pub Date : 2024-07-23 DOI:10.1016/j.cjsc.2024.100395
Huan Hu , Ying Zhang , Shi-Shuang Huang , Zhi-Gang Li , Yungui Liu , Rui Feng , Wei Li
{"title":"Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide","authors":"Huan Hu ,&nbsp;Ying Zhang ,&nbsp;Shi-Shuang Huang ,&nbsp;Zhi-Gang Li ,&nbsp;Yungui Liu ,&nbsp;Rui Feng ,&nbsp;Wei Li","doi":"10.1016/j.cjsc.2024.100395","DOIUrl":null,"url":null,"abstract":"<div><p>Low-dimensional hybrid lead halides with responsive emissions have attracted considerable attention due to their potential applications in sensing. Herein, a new one-dimensional hybrid lead bromide CyPbBr<sub>3</sub> (Cy = cytosine cation) was synthesized to explore its emission evolution in response to temperature and pressure. The compound possesses an edge-sharing 1D double-chain structure and emits warm white light across nearly the entire visible spectrum upon ultraviolet excitation. This emission arises from the self-trapped excitons and its broadband feature is attributed to the strong electron-phonon coupling as revealed by the variable-temperature photoluminescence experiments. Moreover, a 4.5-fold pressure-induced emission enhancement was observed at 2.7 GPa which is caused by the pressure suppressed non-radiative energy loss. Furthermore, <em>in-situ</em> powder X-ray diffraction and Raman experiments reveal the maxima of the emission enhancement is associated with a phase transition at the same pressure. Our work demonstrates that low-dimensional metal halides are a promising class of stimuli-responsive materials which could have potential applications in temperature and pressure sensing.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 10","pages":"Article 100395"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124002496","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Low-dimensional hybrid lead halides with responsive emissions have attracted considerable attention due to their potential applications in sensing. Herein, a new one-dimensional hybrid lead bromide CyPbBr3 (Cy = cytosine cation) was synthesized to explore its emission evolution in response to temperature and pressure. The compound possesses an edge-sharing 1D double-chain structure and emits warm white light across nearly the entire visible spectrum upon ultraviolet excitation. This emission arises from the self-trapped excitons and its broadband feature is attributed to the strong electron-phonon coupling as revealed by the variable-temperature photoluminescence experiments. Moreover, a 4.5-fold pressure-induced emission enhancement was observed at 2.7 GPa which is caused by the pressure suppressed non-radiative energy loss. Furthermore, in-situ powder X-ray diffraction and Raman experiments reveal the maxima of the emission enhancement is associated with a phase transition at the same pressure. Our work demonstrates that low-dimensional metal halides are a promising class of stimuli-responsive materials which could have potential applications in temperature and pressure sensing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一维杂化卤化铅的温度和压力响应型光致发光
具有响应发射的低维混合卤化铅因其在传感领域的潜在应用而备受关注。本文合成了一种新的一维杂化溴化铅 CyPbBr3(Cy = 胞嘧啶阳离子),以探索其发射随温度和压力的变化。该化合物具有边缘共享的一维双链结构,在紫外线激发下几乎能在整个可见光谱范围内发出温暖的白光。这种发射源于自俘获激子,其宽带特性归因于变温光致发光实验所揭示的强电子-声子耦合。此外,在 2.7 GPa 压力下还观察到 4.5 倍的压力诱导发射增强,这是由于压力抑制了非辐射能量损失。此外,原位粉末 X 射线衍射和拉曼实验显示,发射增强的最大值与同一压力下的相变有关。我们的工作表明,低维金属卤化物是一类很有前景的刺激响应材料,在温度和压力传感方面具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
结构化学
结构化学 化学-晶体学
CiteScore
4.70
自引率
22.70%
发文量
5334
审稿时长
13 days
期刊介绍: Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.
期刊最新文献
Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure Printable magnetoresistive sensors: A crucial step toward unconventional magnetoelectronics Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1