Peixin Du , Peng Wang , Xueqian Zhang, Guangwu Wen, Yishan Wang
{"title":"Properties, hazards and valuable metal recovery technologies of red mud: A review","authors":"Peixin Du , Peng Wang , Xueqian Zhang, Guangwu Wen, Yishan Wang","doi":"10.1016/j.partic.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><p>This review presents a summary of the research conducted thus far on the recovery of various types of valuable metals from red mud. The composition, properties, environmental hazards, and current status of comprehensive utilization of red mud were studied. A number of studies have been conducted on the use of red mud as a modifying additive for cement, the development of various catalysts based on red mud, and the recovery of various valuable metals from red mud. Furthermore, we examine several techniques for extracting various types of valuable metals from red mud, including pyrometallurgical recovery, wet leaching recovery, and emerging biobased technology recovery. We investigate the underlying principles, processes, research progress, and the potential for industrial application of these methods, and assess the advantages and disadvantages of each from the perspectives of economic and environmental benefits. Although these methods have certain disadvantages, in general, the recovery of various types of valuable metals from red mud is an effective way to solve the problem of red mud and the supply of metal raw materials. In conclusion, this paper presents an overview of the current state of red mud development and utilization, as well as the various methods employed for the recovery of valuable metals from red mud.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"93 ","pages":"Pages 328-348"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001378","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review presents a summary of the research conducted thus far on the recovery of various types of valuable metals from red mud. The composition, properties, environmental hazards, and current status of comprehensive utilization of red mud were studied. A number of studies have been conducted on the use of red mud as a modifying additive for cement, the development of various catalysts based on red mud, and the recovery of various valuable metals from red mud. Furthermore, we examine several techniques for extracting various types of valuable metals from red mud, including pyrometallurgical recovery, wet leaching recovery, and emerging biobased technology recovery. We investigate the underlying principles, processes, research progress, and the potential for industrial application of these methods, and assess the advantages and disadvantages of each from the perspectives of economic and environmental benefits. Although these methods have certain disadvantages, in general, the recovery of various types of valuable metals from red mud is an effective way to solve the problem of red mud and the supply of metal raw materials. In conclusion, this paper presents an overview of the current state of red mud development and utilization, as well as the various methods employed for the recovery of valuable metals from red mud.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.