Conductive Zeolite Supported Indium-Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-07-31 DOI:10.1002/adma.202407266
Zhen Zhang, Minzhe Li, Shuwen Yang, Qianyi Ma, Jianan Dang, Renfei Feng, Zhengyu Bai, Dianhua Liu, Ming Feng, Zhongwei Chen
{"title":"Conductive Zeolite Supported Indium-Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis.","authors":"Zhen Zhang, Minzhe Li, Shuwen Yang, Qianyi Ma, Jianan Dang, Renfei Feng, Zhengyu Bai, Dianhua Liu, Ming Feng, Zhongwei Chen","doi":"10.1002/adma.202407266","DOIUrl":null,"url":null,"abstract":"<p><p>Upgrading excess CO<sub>2</sub> toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO<sub>2</sub>-to-formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In<sub>0.2</sub>Sn<sub>0.8</sub> alloy nanoclusters into the supercages of the tailored 12-ring framework. The prominent electronic and geometric interactions between In<sub>0.2</sub>Sn<sub>0.8</sub> nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate-limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO<sub>2</sub> to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial-level partial current density of 322 mA cm<sup>-2</sup> and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite-based electrocatalysts for industrial-level formic acid electrosynthesis from CO<sub>2</sub> electrolysis and toward practically accessible electrocatalysis and energy conversion.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202407266","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2-to-formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12-ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate-limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial-level partial current density of 322 mA cm-2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite-based electrocatalysts for industrial-level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于选择性和可扩展甲酸电合成的导电沸石支撑铟锡合金纳米团簇。
将过剩的二氧化碳升级用于甲酸的电合成具有重大的研究和商业意义。然而,同时实现二氧化碳到甲酸的高选择性和工业相关的电流密度仍然是实际应用中的一大挑战。在这里,通过在沸石 Y 的骨架结构中植入 Sn 离子,将超小 In0.2Sn0.8 合金纳米团簇浸渍到定制的 12 环框架的超级笼中,战略性地设计了一种导电沸石支持物。In0.2Sn0.8 纳米合金与沸石支持物之间突出的电子和几何相互作用导致电子密度分散,从而增强了 In 活性位点与 *OCHO 中间体之间的轨道杂化。因此,限速 *OCHO 生成步骤的能量障碍降低,促进了 CO2 到甲酸的电催化加氢反应。因此,所开发的沸石电催化剂可达到 322 mA cm-2 的工业级部分电流密度和 98.2% 的甲酸生产显著法拉第效率,并可在工业级电流密度下将法拉第效率稳定地保持在 93% 以上,持续时间超过 102 小时。这项工作为基于导电沸石的电催化剂在工业级二氧化碳电解甲酸电合成中的应用开辟了新的机遇,也为电催化和能量转换的实际应用提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Advances in the Catalytic Conversion of Ethanol into Nonoxygenated Added-Value Chemicals. Biomedical-Optical-Window Tailored Cyanines for Steerable Inflammatory Bowel Disease Theranostic. Buried Interface Strategies with Covalent Organic Frameworks for High-Performance Inverted Perovskite Solar Cells. Complex Deformation in Soft Cylindrical Structures via Programmable Sequential Instabilities. Hybrid Passive Cooling for Power Equipment Enabled by Metal-Organic Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1