Constructing Slip Stacking Diversity in Van der Waals Homobilayers.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-07-31 DOI:10.1002/adma.202404734
Yun Chen, Jinguo Lin, Junjie Jiang, Danyang Wang, Yue Yu, Shouheng Li, Jun'an Pan, Haitao Chen, Weiguo Mao, Huanhuan Xing, Fangping Ouyang, Zheng Luo, Shen Zhou, Feng Liu, Shanshan Wang, Jin Zhang
{"title":"Constructing Slip Stacking Diversity in Van der Waals Homobilayers.","authors":"Yun Chen, Jinguo Lin, Junjie Jiang, Danyang Wang, Yue Yu, Shouheng Li, Jun'an Pan, Haitao Chen, Weiguo Mao, Huanhuan Xing, Fangping Ouyang, Zheng Luo, Shen Zhou, Feng Liu, Shanshan Wang, Jin Zhang","doi":"10.1002/adma.202404734","DOIUrl":null,"url":null,"abstract":"<p><p>The van der Waals (vdW) interface provides two important degrees of freedom-twist and slip-to tune interlayer structures and inspire unique physics. However, constructing diversified high-quality slip stackings (i.e., lattice orientations between layers are parallel with only interlayer sliding) is more challenging than twisted stackings due to angstrom-scale structural discrepancies between different slip stackings, sparsity of thermodynamically stable candidates and insufficient mechanism understanding. Here, using transition metal dichalcogenide (TMD) homobilayers as a model system, this work theoretically elucidates that vdW materials with low lattice symmetry and weak interlayer coupling allow the creation of multifarious thermodynamically advantageous slip stackings, and experimentally achieves 13 and 9 slip stackings in 1T″-ReS<sub>2</sub> and 1T″-ReSe<sub>2</sub> bilayers via direct growth, which are systematically revealed by atomic-resolution scanning transmission electron microscopy (STEM), angle-resolved polarization Raman spectroscopy, and second harmonic generation (SHG) measurements. This work also develops modulation strategies to switch the stacking via grain boundaries (GBs) and to expand the slip stacking library from thermodynamic to kinetically favored structures via in situ thermal treatment. Finally, density functional theory (DFT) calculations suggest a prominent dependence of the pressure-induced electronic band structure transition on stacking configurations. These studies unveil a unique vdW epitaxy and offer a viable means for manipulating interlayer atomic registries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202404734","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The van der Waals (vdW) interface provides two important degrees of freedom-twist and slip-to tune interlayer structures and inspire unique physics. However, constructing diversified high-quality slip stackings (i.e., lattice orientations between layers are parallel with only interlayer sliding) is more challenging than twisted stackings due to angstrom-scale structural discrepancies between different slip stackings, sparsity of thermodynamically stable candidates and insufficient mechanism understanding. Here, using transition metal dichalcogenide (TMD) homobilayers as a model system, this work theoretically elucidates that vdW materials with low lattice symmetry and weak interlayer coupling allow the creation of multifarious thermodynamically advantageous slip stackings, and experimentally achieves 13 and 9 slip stackings in 1T″-ReS2 and 1T″-ReSe2 bilayers via direct growth, which are systematically revealed by atomic-resolution scanning transmission electron microscopy (STEM), angle-resolved polarization Raman spectroscopy, and second harmonic generation (SHG) measurements. This work also develops modulation strategies to switch the stacking via grain boundaries (GBs) and to expand the slip stacking library from thermodynamic to kinetically favored structures via in situ thermal treatment. Finally, density functional theory (DFT) calculations suggest a prominent dependence of the pressure-induced electronic band structure transition on stacking configurations. These studies unveil a unique vdW epitaxy and offer a viable means for manipulating interlayer atomic registries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建范德瓦尔斯同质层中的滑动堆积多样性。
范德瓦尔斯(vdW)界面提供了两个重要的自由度--扭曲和滑移--以调整层间结构并激发独特的物理学。然而,由于不同滑移叠层之间存在埃级尺度的结构差异、热力学稳定的候选结构稀少以及对机理的理解不足,构建多样化的高质量滑移叠层(即层间晶格取向平行,只有层间滑移)比扭曲叠层更具挑战性。在这里,这项研究以过渡金属二钙化物(TMD)均质层为模型系统,从理论上阐明了具有低晶格对称性和弱层间耦合的 vdW 材料可以产生多种热力学上有利的滑移堆积、通过原子分辨率扫描透射电子显微镜(STEM)、角度分辨偏振拉曼光谱和二次谐波发生(SHG)测量,系统地揭示了这一点。这项工作还开发了通过晶界(GB)切换堆叠的调制策略,并通过原位热处理将滑移堆叠库从热力学结构扩展到动力学有利结构。最后,密度泛函理论(DFT)计算表明,压力诱导的电子能带结构转变与堆积构型有着显著的相关性。这些研究揭示了一种独特的 vdW 外延,并为操纵层间原子序提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Advances in the Catalytic Conversion of Ethanol into Nonoxygenated Added-Value Chemicals. Biomedical-Optical-Window Tailored Cyanines for Steerable Inflammatory Bowel Disease Theranostic. Buried Interface Strategies with Covalent Organic Frameworks for High-Performance Inverted Perovskite Solar Cells. Complex Deformation in Soft Cylindrical Structures via Programmable Sequential Instabilities. Hybrid Passive Cooling for Power Equipment Enabled by Metal-Organic Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1