Nora Hedbäck, Marie-Louise Dichman, Morten Hindsø, Carsten Dirksen, Nils Brun Jørgensen, Kirstine Nyvold Bojsen-Møller, Viggo B Kristiansen, Jens F Rehfeld, Bolette Hartmann, Jens Juul Holst, Maria Saur Svane, Sten Madsbad
{"title":"Effect of ghrelin on glucose tolerance, gut hormones, appetite, and food intake after sleeve gastrectomy.","authors":"Nora Hedbäck, Marie-Louise Dichman, Morten Hindsø, Carsten Dirksen, Nils Brun Jørgensen, Kirstine Nyvold Bojsen-Møller, Viggo B Kristiansen, Jens F Rehfeld, Bolette Hartmann, Jens Juul Holst, Maria Saur Svane, Sten Madsbad","doi":"10.1152/ajpendo.00177.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Ghrelin is an appetite-stimulating hormone secreted from the gastric mucosa in the fasting state, and secretion decreases in response to food intake. After sleeve gastrectomy (SG), plasma concentrations of ghrelin decrease markedly. Whether this affects appetite and glucose tolerance postoperatively is unknown. We investigated the effects of ghrelin infusion on appetite and glucose tolerance in individuals with obesity before and 3 mo after SG. Twelve participants scheduled for SG were included. Before and 3 mo after surgery, a mixed-meal test followed by an ad libitum meal test was performed with concomitant infusions of acyl-ghrelin (1 pmol/kg/min) or placebo. Infusions began 60 min before meal intake to reach a steady state before the mixed-meal and were continued throughout the study day. Two additional experimental days with 0.25 pmol/kg/min and 10 pmol/kg/min of acyl-ghrelin infusions were conducted 3 mo after surgery. Both before and after SG, postprandial glucose concentrations increased dose dependently during ghrelin infusions compared with placebo. Ghrelin infusions inhibited basal and postprandial insulin secretion rates, resulting in lowered measures of β-cell function, but no effect on insulin sensitivity was seen. Ad libitum meal intake was unaffected by the administration of ghrelin. In conclusion, ghrelin infusion increases postprandial plasma glucose concentrations and impairs β-cell function before and after SG but has no effect on ad libitum meal intake. We speculate that the lower concentration of ghrelin after SG may impact glucose metabolism following this procedure.<b>NEW & NOTEWORTHY</b> Ghrelin's effect on glucose tolerance and food intake following sleeve gastrectomy (SG) was evaluated. Acyl-ghrelin was infused during a mixed-meal and ad libitum meals before and 3 mo after surgery. Postprandial glucose concentrations increased during ghrelin infusions, both before and after surgery, while insulin production was inhibited. However, ad libitum meal intake did not differ during ghrelin administration compared with placebo. The decreased ghrelin concentration following SG may contribute to the glycemic control after surgery.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E396-E410"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00177.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Ghrelin is an appetite-stimulating hormone secreted from the gastric mucosa in the fasting state, and secretion decreases in response to food intake. After sleeve gastrectomy (SG), plasma concentrations of ghrelin decrease markedly. Whether this affects appetite and glucose tolerance postoperatively is unknown. We investigated the effects of ghrelin infusion on appetite and glucose tolerance in individuals with obesity before and 3 mo after SG. Twelve participants scheduled for SG were included. Before and 3 mo after surgery, a mixed-meal test followed by an ad libitum meal test was performed with concomitant infusions of acyl-ghrelin (1 pmol/kg/min) or placebo. Infusions began 60 min before meal intake to reach a steady state before the mixed-meal and were continued throughout the study day. Two additional experimental days with 0.25 pmol/kg/min and 10 pmol/kg/min of acyl-ghrelin infusions were conducted 3 mo after surgery. Both before and after SG, postprandial glucose concentrations increased dose dependently during ghrelin infusions compared with placebo. Ghrelin infusions inhibited basal and postprandial insulin secretion rates, resulting in lowered measures of β-cell function, but no effect on insulin sensitivity was seen. Ad libitum meal intake was unaffected by the administration of ghrelin. In conclusion, ghrelin infusion increases postprandial plasma glucose concentrations and impairs β-cell function before and after SG but has no effect on ad libitum meal intake. We speculate that the lower concentration of ghrelin after SG may impact glucose metabolism following this procedure.NEW & NOTEWORTHY Ghrelin's effect on glucose tolerance and food intake following sleeve gastrectomy (SG) was evaluated. Acyl-ghrelin was infused during a mixed-meal and ad libitum meals before and 3 mo after surgery. Postprandial glucose concentrations increased during ghrelin infusions, both before and after surgery, while insulin production was inhibited. However, ad libitum meal intake did not differ during ghrelin administration compared with placebo. The decreased ghrelin concentration following SG may contribute to the glycemic control after surgery.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.