首页 > 最新文献

American journal of physiology. Endocrinology and metabolism最新文献

英文 中文
Placenta hIGF1 nanoparticle treatment in guinea pigs mitigates FGR-associated fetal sex dependent effects on liver metabolism-related signaling pathways.
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-05 DOI: 10.1152/ajpendo.00440.2024
Baylea N Davenport, Alyssa Williams, Timothy Rh Regnault, Helen N Jones, Rebecca L Wilson

Fetal development in an adverse in utero environment significantly increases the risk of developing metabolic diseases in later life, including dyslipidemia, non-alcoholic fatty liver diseases and diabetes. The aim of this study was to determine whether improving the in utero fetal growth environment with a placental nanoparticle gene therapy would ameliorate fetal growth restriction (FGR)-associated dysregulation of fetal hepatic lipid and glucose metabolism-related signaling pathways. Using the guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, placenta efficiency and fetal weight was significantly improved following three administrations of a non-viral polymer-based nanoparticle gene therapy to the placenta from mid-pregnancy (gestational day 35) until gestational day 52. The nanoparticle gene therapy transiently increased expression of human insulin-like growth factor 1 (hIGF1) in placenta trophoblast. Fetal liver tissue was collected near-term at gestational day 60. Fetal sex specific differences in liver gene and protein expression of pro-fibrosis and glucose metabolism-related factors were demonstrated in sham-treated FGR fetuses but not observed in FGR fetuses who received placental hIGF1 nanoparticle treatment. Increased plasma bilirubin, an indirect measure of hepatic activity, was also demonstrated with placental hIGF1 nanoparticle treatment. We speculate that the changes in liver gene and protein expression and increased liver activity that result in similar expression profiles to appropriately growing Control fetuses might confer protection against increased susceptibility to aberrant liver physiology in later-life. Overall, this work opens avenues for future research assessing the translational prospect of mitigating FGR-induced metabolic derangements.

{"title":"Placenta <i>hIGF1</i> nanoparticle treatment in guinea pigs mitigates FGR-associated fetal sex dependent effects on liver metabolism-related signaling pathways.","authors":"Baylea N Davenport, Alyssa Williams, Timothy Rh Regnault, Helen N Jones, Rebecca L Wilson","doi":"10.1152/ajpendo.00440.2024","DOIUrl":"https://doi.org/10.1152/ajpendo.00440.2024","url":null,"abstract":"<p><p>Fetal development in an adverse in utero environment significantly increases the risk of developing metabolic diseases in later life, including dyslipidemia, non-alcoholic fatty liver diseases and diabetes. The aim of this study was to determine whether improving the in utero fetal growth environment with a placental nanoparticle gene therapy would ameliorate fetal growth restriction (FGR)-associated dysregulation of fetal hepatic lipid and glucose metabolism-related signaling pathways. Using the guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, placenta efficiency and fetal weight was significantly improved following three administrations of a non-viral polymer-based nanoparticle gene therapy to the placenta from mid-pregnancy (gestational day 35) until gestational day 52. The nanoparticle gene therapy transiently increased expression of <i>human insulin-like growth factor 1 (hIGF1)</i> in placenta trophoblast. Fetal liver tissue was collected near-term at gestational day 60. Fetal sex specific differences in liver gene and protein expression of pro-fibrosis and glucose metabolism-related factors were demonstrated in sham-treated FGR fetuses but not observed in FGR fetuses who received placental <i>hIGF1</i> nanoparticle treatment. Increased plasma bilirubin, an indirect measure of hepatic activity, was also demonstrated with placental <i>hIGF1</i> nanoparticle treatment. We speculate that the changes in liver gene and protein expression and increased liver activity that result in similar expression profiles to appropriately growing Control fetuses might confer protection against increased susceptibility to aberrant liver physiology in later-life. Overall, this work opens avenues for future research assessing the translational prospect of mitigating FGR-induced metabolic derangements.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel soluble guanylate cyclase activator, avenciguat, in combination with empagliflozin, protects against renal and hepatic injury in diabetic db/db mice.
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-05 DOI: 10.1152/ajpendo.00254.2024
Nisha Sharma, Wenjin Liu, Xiao-Qing E Tsai, Zhou Wang, Connor Outtrim, Anna Tang, Michael P Pieper, Glenn A Reinhart, Yufeng Huang

Diabetic complications are linked to oxidative stress, which hampers the cyclic guanosine monophosphate production by inhibiting nitric oxide /soluble guanylate cyclase (sGC) signalling. This study aimed to determine whether administration of a novel sGC activator avenciguat alone or in combination with a SGLT2 inhibitor could slow the progression of renal and liver fibrosis in the type 2 diabetic and uninephrectomized db/db mouse model. Experiment groups included normal controls, untreated db/db mice terminated at 12 and 18 weeks of age, and db/db mice treated with either one of two doses of avenciguat alone, empagliflozin (Empa) alone, or a combination of both from weeks 12 to 18 of age. Untreated db/db mice exhibited obesity, hyperglycemia, elevated levels of HbA1c and triglycerides (TG) and developed progressive albuminuria, glomerulosclerosis, fatty liver and liver fibrosis between weeks 12 and 18 of age, accompanied by increased renal and liver production of fibronectin, type-IV collagen, laminin, and increased oxidative stress markers. Avenciguat had no effect on body weight but reduced both blood HbA1c and TG levels, while Empa reduced HbA1c but not TG levels as compared to untreated db/db. Both avenciguat and Empa alone effectively slowed the progression of diabetes-associated glomerulosclerosis and liver fibrosis. Importantly, avenciguat, especially at high dose in combination with Empa, further lowered these progression markers compared to baseline measurements. These results suggested that either avenciguat alone or in combination with Empa is therapeutic. Avenciguat in combination with Empa shows promise in halting the progression of diabetic complications.

糖尿病并发症与氧化应激有关,氧化应激通过抑制一氧化氮/可溶性鸟苷酸环化酶(sGC)信号传导,阻碍环鸟苷酸单磷酸的产生。本研究旨在确定单独使用新型sGC激活剂阿维Acenciguat或与SGLT2抑制剂联合使用是否能减缓2型糖尿病和未切除肾脏的db/db小鼠模型中肾脏和肝脏纤维化的进展。实验组包括正常对照组、在12周龄和18周龄终止实验的未经治疗的db/db小鼠,以及在12周龄至18周龄期间接受两种剂量之一的阿维A酸单独治疗、empagliflozin(Empa)单独治疗或两者联合治疗的db/db小鼠。未经治疗的db/db小鼠表现出肥胖、高血糖、HbA1c和甘油三酯(TG)水平升高,并在12至18周龄期间出现进行性白蛋白尿、肾小球硬化、脂肪肝和肝纤维化,同时伴有肾脏和肝脏产生的纤维连接蛋白、IV型胶原、层粘连蛋白增加以及氧化应激标记物增加。阿维Acenciguat对体重没有影响,但能降低血液中的HbA1c和TG水平,而Empa与未处理的db/db相比,能降低HbA1c,但不能降低TG水平。单用阿维Aciguat和Empa都能有效减缓糖尿病相关肾小球硬化和肝纤维化的进展。重要的是,与基线测量值相比,阿维Aciguat(尤其是大剂量与Empa联用时)可进一步降低这些进展指标。这些结果表明,阿文吉夸特单独或与 Empa 联用都具有治疗作用。阿文吉曲特与 Empa 联用有望阻止糖尿病并发症的发展。
{"title":"A novel soluble guanylate cyclase activator, avenciguat, in combination with empagliflozin, protects against renal and hepatic injury in diabetic db/db mice.","authors":"Nisha Sharma, Wenjin Liu, Xiao-Qing E Tsai, Zhou Wang, Connor Outtrim, Anna Tang, Michael P Pieper, Glenn A Reinhart, Yufeng Huang","doi":"10.1152/ajpendo.00254.2024","DOIUrl":"https://doi.org/10.1152/ajpendo.00254.2024","url":null,"abstract":"<p><p>Diabetic complications are linked to oxidative stress, which hampers the cyclic guanosine monophosphate production by inhibiting nitric oxide /soluble guanylate cyclase (sGC) signalling. This study aimed to determine whether administration of a novel sGC activator avenciguat alone or in combination with a SGLT2 inhibitor could slow the progression of renal and liver fibrosis in the type 2 diabetic and uninephrectomized db/db mouse model. Experiment groups included normal controls, untreated db/db mice terminated at 12 and 18 weeks of age, and db/db mice treated with either one of two doses of avenciguat alone, empagliflozin (Empa) alone, or a combination of both from weeks 12 to 18 of age. Untreated db/db mice exhibited obesity, hyperglycemia, elevated levels of HbA1c and triglycerides (TG) and developed progressive albuminuria, glomerulosclerosis, fatty liver and liver fibrosis between weeks 12 and 18 of age, accompanied by increased renal and liver production of fibronectin, type-IV collagen, laminin, and increased oxidative stress markers. Avenciguat had no effect on body weight but reduced both blood HbA1c and TG levels, while Empa reduced HbA1c but not TG levels as compared to untreated db/db. Both avenciguat and Empa alone effectively slowed the progression of diabetes-associated glomerulosclerosis and liver fibrosis. Importantly, avenciguat, especially at high dose in combination with Empa, further lowered these progression markers compared to baseline measurements. These results suggested that either avenciguat alone or in combination with Empa is therapeutic. Avenciguat in combination with Empa shows promise in halting the progression of diabetic complications.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
L-type calcium channel blockade worsens glucose tolerance and β-cell function in C57BL6/J mice exposed to intermittent hypoxia.
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2025-01-06 DOI: 10.1152/ajpendo.00423.2023
Stanley M Chen Cardenas, Tess A Baker, Larissa A Shimoda, Ernesto Bernal-Mizrachi, Naresh M Punjabi

Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for the treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated. Adult male C57BL6/J mice were exposed to either nifedipine or vehicle concurrently with IH or intermittent air (IA) over 5 days. IH exposure entailed cycling fractional-inspired oxygen levels between 0.21 and 0.055 at a rate of 60 events/h. Nifedipine (20 mg/kg/day) or vehicle was administered via subcutaneous osmotic pumps resulting in four groups of mice: IA-vehicle (control), IA-nifedipine, IH-vehicle, and IH-nifedipine. Compared with IA (control), IH increased fasting glucose (mean Δ: 33.0 mg/dL; P < 0.001) and insulin (mean Δ: 0.53 ng/mL; P < 0.001) with nifedipine having no independent effect. Furthermore, glucose tolerance was worse with nifedipine alone, and IH further exacerbated the impairment in glucose disposal (P = 0.013 for interaction). Nifedipine also decreased glucose-stimulated insulin secretion and the insulinogenic index, with addition of IH attenuating those measures further. There were no discernible alterations in insulin biosynthesis/processing, insulin content, or islet morphology. These findings underscore the detrimental impact of IH on insulin sensitivity and glucose tolerance while highlighting that nifedipine exacerbates these disturbances through impaired β-cell function. Consequently, cautious use of L-type calcium channel blockers is warranted in patients with OSA, particularly in those at risk for type 2 diabetes.NEW & NOTEWORTHY The results of this study demonstrate the interaction between intermittent hypoxemia (IH) and nifedipine in a murine model. IH raises fasting glucose and insulin levels, with nifedipine exacerbating these disturbances. Glucose tolerance worsens when nifedipine is administered alone, and IH magnifies the impairment in glucose disposal. These findings raise the possibility of potential deleterious effects of L-type calcium channel blockers in patients with obstructive sleep apnea (OSA).

{"title":"L-type calcium channel blockade worsens glucose tolerance and β-cell function in C57BL6/J mice exposed to intermittent hypoxia.","authors":"Stanley M Chen Cardenas, Tess A Baker, Larissa A Shimoda, Ernesto Bernal-Mizrachi, Naresh M Punjabi","doi":"10.1152/ajpendo.00423.2023","DOIUrl":"https://doi.org/10.1152/ajpendo.00423.2023","url":null,"abstract":"<p><p>Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for the treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated. Adult male C57BL6/J mice were exposed to either nifedipine or vehicle concurrently with IH or intermittent air (IA) over 5 days. IH exposure entailed cycling fractional-inspired oxygen levels between 0.21 and 0.055 at a rate of 60 events/h. Nifedipine (20 mg/kg/day) or vehicle was administered via subcutaneous osmotic pumps resulting in four groups of mice: IA-vehicle (control), IA-nifedipine, IH-vehicle, and IH-nifedipine. Compared with IA (control), IH increased fasting glucose (mean Δ: 33.0 mg/dL; <i>P</i> < 0.001) and insulin (mean Δ: 0.53 ng/mL; <i>P</i> < 0.001) with nifedipine having no independent effect. Furthermore, glucose tolerance was worse with nifedipine alone, and IH further exacerbated the impairment in glucose disposal (<i>P</i> = 0.013 for interaction). Nifedipine also decreased glucose-stimulated insulin secretion and the insulinogenic index, with addition of IH attenuating those measures further. There were no discernible alterations in insulin biosynthesis/processing, insulin content, or islet morphology. These findings underscore the detrimental impact of IH on insulin sensitivity and glucose tolerance while highlighting that nifedipine exacerbates these disturbances through impaired β-cell function. Consequently, cautious use of L-type calcium channel blockers is warranted in patients with OSA, particularly in those at risk for type 2 diabetes.<b>NEW & NOTEWORTHY</b> The results of this study demonstrate the interaction between intermittent hypoxemia (IH) and nifedipine in a murine model. IH raises fasting glucose and insulin levels, with nifedipine exacerbating these disturbances. Glucose tolerance worsens when nifedipine is administered alone, and IH magnifies the impairment in glucose disposal. These findings raise the possibility of potential deleterious effects of L-type calcium channel blockers in patients with obstructive sleep apnea (OSA).</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":"328 2","pages":"E161-E172"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbohydrate supplementation maintains physical performance during short-term energy deficit despite reductions in exogenous glucose oxidation. 尽管外源性葡萄糖氧化减少,但在短期能量不足时,补充碳水化合物仍能维持身体机能。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2025-01-15 DOI: 10.1152/ajpendo.00418.2024
Lee M Margolis, Jillian T Allen, Nancy E Murphy, Christopher T Carrigan, Emily E Howard, David E Barney, Devin J Drummer, Julia Michalak, Arny A Ferrando, Stefan M Pasiakos, Jess A Gwin

Exogenous glucose oxidation is reduced 55% during aerobic exercise after 3 days of complete starvation. Whether energy deficits more commonly experienced by athletes and military personnel similarly affect exogenous glucose oxidation and what impact this has on physical performance remains undetermined. This randomized, longitudinal parallel study aimed to assess the effects of varying magnitudes of energy deficit (DEF) on exogenous glucose oxidation and physical performance compared with energy balance (BAL). Participants consumed a 4-day BAL diet, followed by a 6-day 20% (n = 10), 40% (n = 10), or 60% (n = 10) DEF diet. At the end of each energy phase, participants performed 90-min of steady-state cycle ergometry (56 ± 3% V̇o2peak) while consuming a glucose drink (80 g), followed by a time to exhaustion (TTE) performance test. Substrate oxidation (g/min) was determined by indirect calorimetry and 13C-glucose. Muscle glycogen (mmol/kg dry wt) and transcript accumulation were assessed in rested fasted muscle collected before exercise in each phase. Muscle glycogen was lower (P = 0.002) during DEF (365 ± 179) than BAL (456 ± 125), regardless of group. Transcriptional regulation of glucose uptake (GLUT4 and IRS2) and glycogenolysis (HKII and PKM) were lower (P < 0.05) during DEF than BAL, independent of group. Regardless of group, exogenous glucose oxidation was 10% lower (P < 0.001) during DEF (0.38 ± 0.08) than BAL (0.42 ± 0.08). There was no evidence of a difference in TTE between BAL and DEF or between groups. In conclusion, despite modest reduction in exogenous glucose oxidative capacity during energy deficit, physical performance was similar compared with balance.NEW & NOTEWORTHY Short-term (6-day) energy deficit reduced exogenous glucose oxidation during exercise. Though less exogenous glucose was used for fuel, young healthy individuals appear to have a metabolic resilience to short-term periods of low energy availability, with no observed differences in the ability to take up and oxidize exogenous glucose between minimal (20%), moderate (40%), and severe (60%) energy deficits. Similar metabolic responses to carbohydrate supplementation independent of deficit severity likely contributed to sustainment of physical performance.

经过三天完全饥饿的有氧运动,外源性葡萄糖氧化减少55%。运动员和军事人员更常见的能量不足是否同样影响外源性葡萄糖氧化,以及这对身体表现的影响仍未确定。这项随机、纵向平行研究旨在评估与能量平衡(BAL)相比,不同程度的能量赤字(DEF)对外源性葡萄糖氧化和身体机能的影响。参与者食用了为期4天的BAL饮食,随后是为期6天的20% (n=10)、40% (n=10)或60% (n=10)的DEF饮食。在每个能量阶段结束时,参与者在消耗葡萄糖饮料(80 g)的同时进行90分钟的稳态循环测量(56±3% V / o2峰值),然后进行疲劳时间(TTE)性能测试。通过间接量热法和13C葡萄糖测定底物氧化(g/min)。在每个阶段运动前收集的休息禁食肌肉中评估肌糖原(mmol/kg干重)和转录物积累。无论各组,DEF(365±179)组肌糖原低于BAL(456±125)组(P = 0.002)。DEF期间葡萄糖摄取(glut4 - italic>和IRS2)和糖原分解(HKII和PKM)的转录调节低于BAL (P < 0.05),与对照组无关。无论各组,DEF(0.38±0.08)期间外源性葡萄糖氧化比BAL(0.42±0.08)低10% (P < 0.001)。在BAL和DEF组之间,没有证据表明TTE有差异。综上所述,尽管能量不足时外源性葡萄糖氧化能力略有下降,但与平衡时相比,身体表现相似。
{"title":"Carbohydrate supplementation maintains physical performance during short-term energy deficit despite reductions in exogenous glucose oxidation.","authors":"Lee M Margolis, Jillian T Allen, Nancy E Murphy, Christopher T Carrigan, Emily E Howard, David E Barney, Devin J Drummer, Julia Michalak, Arny A Ferrando, Stefan M Pasiakos, Jess A Gwin","doi":"10.1152/ajpendo.00418.2024","DOIUrl":"10.1152/ajpendo.00418.2024","url":null,"abstract":"<p><p>Exogenous glucose oxidation is reduced 55% during aerobic exercise after 3 days of complete starvation. Whether energy deficits more commonly experienced by athletes and military personnel similarly affect exogenous glucose oxidation and what impact this has on physical performance remains undetermined. This randomized, longitudinal parallel study aimed to assess the effects of varying magnitudes of energy deficit (DEF) on exogenous glucose oxidation and physical performance compared with energy balance (BAL). Participants consumed a 4-day BAL diet, followed by a 6-day 20% (<i>n</i> = 10), 40% (<i>n</i> = 10), or 60% (<i>n</i> = 10) DEF diet. At the end of each energy phase, participants performed 90-min of steady-state cycle ergometry (56 ± 3% V̇o<sub>2peak</sub>) while consuming a glucose drink (80 g), followed by a time to exhaustion (TTE) performance test. Substrate oxidation (g/min) was determined by indirect calorimetry and <sup>13</sup>C-glucose. Muscle glycogen (mmol/kg dry wt) and transcript accumulation were assessed in rested fasted muscle collected before exercise in each phase. Muscle glycogen was lower (<i>P</i> = 0.002) during DEF (365 ± 179) than BAL (456 ± 125), regardless of group. Transcriptional regulation of glucose uptake (<i>GLUT4</i> and <i>IRS2</i>) and glycogenolysis (<i>HKII</i> and <i>PKM</i>) were lower (<i>P</i> < 0.05) during DEF than BAL, independent of group. Regardless of group, exogenous glucose oxidation was 10% lower (<i>P</i> < 0.001) during DEF (0.38 ± 0.08) than BAL (0.42 ± 0.08). There was no evidence of a difference in TTE between BAL and DEF or between groups. In conclusion, despite modest reduction in exogenous glucose oxidative capacity during energy deficit, physical performance was similar compared with balance.<b>NEW & NOTEWORTHY</b> Short-term (6-day) energy deficit reduced exogenous glucose oxidation during exercise. Though less exogenous glucose was used for fuel, young healthy individuals appear to have a metabolic resilience to short-term periods of low energy availability, with no observed differences in the ability to take up and oxidize exogenous glucose between minimal (20%), moderate (40%), and severe (60%) energy deficits. Similar metabolic responses to carbohydrate supplementation independent of deficit severity likely contributed to sustainment of physical performance.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E242-E253"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity. 骨髓细胞代谢组学和转录组学重塑对母体肥胖的反应。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2025-01-10 DOI: 10.1152/ajpendo.00333.2024
Yem J Alharithi, Elysse A Phillips, Tim D Wilson, Sneha P Couvillion, Carrie D Nicora, Priscila Darakjian, Shauna Rakshe, Suzanne S Fei, Brittany R Counts, Thomas O Metz, Robert P Searles, Sushil Kumar, Alina Maloyan

Maternal obesity puts the offspring at high risk of developing obesity and cardiometabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared with the offspring of regular diet-fed mothers (Off-RD). We have previously reported significant immune perturbations in the bone marrow of newly weaned Off-HFD. Here, we hypothesized that lipid metabolism is altered in the bone marrow of Off-HFD versus Off-RD. To test this hypothesis, we investigated the lipidomic profile of bone marrow cells collected from 3-week-old Off-RD and Off-HFD. Diacylglycerols (DAGs), triacylglycerols (TAGs), sphingolipids, and phospholipids were remarkably different between the groups, independent of fetal sex. Levels of cholesteryl esters were significantly decreased in Off-HFD, suggesting reduced delivery of cholesterol. These were accompanied by age-dependent progression of mitochondrial dysfunction in bone marrow cells. We subsequently isolated CD11b+ myeloid cells from 3-wk-old mice and conducted metabolomic, lipidomic, and transcriptomic analyses. The lipidomic profiles of myeloid cells were similar to those of bone marrow cells and included increases in DAGs and decreased TAGs. Transcriptomics revealed altered expression of genes related to immune pathways, including macrophage alternative activation, B-cell receptors, and transforming growth factor-β signaling. All told, this study revealed lipidomic, metabolomic, and gene expression abnormalities in bone marrow cells broadly, and in bone marrow myeloid cells particularly, in the newly weaned offspring of mothers with obesity, which might at least partially explain the progression of metabolic and cardiovascular diseases in their adulthood.NEW & NOTEWORTHY Our data revealed significant immunometabolic perturbations in the bone marrow and myeloid cells in the newly weaned offspring born to mothers with obesity. Adaptation to an adverse maternal intrauterine environment affects bone marrow metabolism at a very young age and might affect responses to immune challenges that appear later in life, for example, infections or cancer.

母亲肥胖使后代在成年后患肥胖症和心脏代谢疾病的风险很高。在这里,我们利用了一个母体高脂肪饮食(HFD)诱导的肥胖小鼠模型,该模型再现了人类所见的代谢紊乱。我们发现,与常规饮食的母亲(Off-RD)相比,hfd喂养的母亲(Off-HFD)的后代肥胖增加。我们以前曾报道过新断奶Off-HFD患者骨髓中显著的免疫紊乱。在这里,我们假设Off-HFD与Off-RD在骨髓中的脂质代谢发生了改变。为了验证这一假设,我们研究了从三周大的Off-RD和Off-HFD收集的骨髓细胞的脂质组学特征。二酰基甘油酯(dag)、三酰基甘油(tag)、鞘脂和磷脂在各组间差异显著,与胎儿性别无关。Off-HFD组的胆固醇酯水平显著降低,表明胆固醇的输送减少。这些都伴随着骨髓细胞线粒体功能障碍的年龄依赖性进展。随后,我们从三周大的小鼠中分离出CD11b+骨髓细胞,并进行代谢组学、脂质组学和转录组学分析。髓细胞的脂质组学特征与骨髓细胞相似,包括dag的增加和tag的减少。转录组学揭示了免疫通路相关基因的表达改变,包括巨噬细胞替代激活、b细胞受体和tgf - β信号传导。总而言之,这项研究揭示了骨髓细胞中脂质组学、代谢组学和基因表达的异常,特别是在骨髓样细胞中,在肥胖母亲的新断奶的后代中,这可能至少部分解释了他们成年后代谢和心血管疾病的进展。
{"title":"Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity.","authors":"Yem J Alharithi, Elysse A Phillips, Tim D Wilson, Sneha P Couvillion, Carrie D Nicora, Priscila Darakjian, Shauna Rakshe, Suzanne S Fei, Brittany R Counts, Thomas O Metz, Robert P Searles, Sushil Kumar, Alina Maloyan","doi":"10.1152/ajpendo.00333.2024","DOIUrl":"10.1152/ajpendo.00333.2024","url":null,"abstract":"<p><p>Maternal obesity puts the offspring at high risk of developing obesity and cardiometabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared with the offspring of regular diet-fed mothers (Off-RD). We have previously reported significant immune perturbations in the bone marrow of newly weaned Off-HFD. Here, we hypothesized that lipid metabolism is altered in the bone marrow of Off-HFD versus Off-RD. To test this hypothesis, we investigated the lipidomic profile of bone marrow cells collected from 3-week-old Off-RD and Off-HFD. Diacylglycerols (DAGs), triacylglycerols (TAGs), sphingolipids, and phospholipids were remarkably different between the groups, independent of fetal sex. Levels of cholesteryl esters were significantly decreased in Off-HFD, suggesting reduced delivery of cholesterol. These were accompanied by age-dependent progression of mitochondrial dysfunction in bone marrow cells. We subsequently isolated CD11b+ myeloid cells from 3-wk-old mice and conducted metabolomic, lipidomic, and transcriptomic analyses. The lipidomic profiles of myeloid cells were similar to those of bone marrow cells and included increases in DAGs and decreased TAGs. Transcriptomics revealed altered expression of genes related to immune pathways, including macrophage alternative activation, B-cell receptors, and transforming growth factor-β signaling. All told, this study revealed lipidomic, metabolomic, and gene expression abnormalities in bone marrow cells broadly, and in bone marrow myeloid cells particularly, in the newly weaned offspring of mothers with obesity, which might at least partially explain the progression of metabolic and cardiovascular diseases in their adulthood.<b>NEW & NOTEWORTHY</b> Our data revealed significant immunometabolic perturbations in the bone marrow and myeloid cells in the newly weaned offspring born to mothers with obesity. Adaptation to an adverse maternal intrauterine environment affects bone marrow metabolism at a very young age and might affect responses to immune challenges that appear later in life, for example, infections or cancer.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E254-E271"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induction of erythropoietin by dietary medium-chain triacylglycerol in humans. 人膳食中链三酰甘油诱导促红细胞生成素的作用。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2025-01-10 DOI: 10.1152/ajpendo.00415.2024
Josephine M Kanta, Annemarie Lundsgaard, Amanda Schaufuss, Maximilian Kleinert, Bente Kiens, Andreas M Fritzen

Erythropoietin (EPO) is pivotal in regulating red blood cell (erythrocyte) concentrations and is primarily synthesized in the kidney. Recent research has unveiled a possible link between elevated circulating concentrations of ketone bodies (KB) and circulating EPO concentrations; however, it is not known whether nutritionally induced endogenous ketogenesis can be a stimulus to induce EPO in humans. Therefore, this study aimed to assess whether acute and chronic intake of medium-chain fatty acid-containing triacylglycerol (MCT), which rapidly enhances endogenous circulating KB, would elevate circulating EPO concentrations in humans, as indicated by prior work with exogenous KB administration. The study followed a crossover design involving 16 young men undergoing two 8-day MCT or energy-matched long-chain fatty acid-containing triacylglycerol (LCT) interventions in a randomized order. Five-hour test days were performed before and after each intervention, in which circulating KB and EPO concentrations as well as hematological parameters were assessed. Acute intake of MCT yielded a 222% sustained 5-h elevation in KB concentrations compared with LCT-with notable peak values of 0.7 ± 0.1 mmol·L-1 (312% above basal values). Remarkably, within just 8 days of daily MCT intake an impressive 38% increase in basal, fasting plasma EPO concentrations (7.19 ± 1.14 to 9.91 ± 1.25 mIU·mL-1) was demonstrated. In conclusion, this study unveils a novel physiological stimulus of circulating EPO concentrations in humans, potentially offering a new dietary approach to counter anemia in cardiovascular diseases.NEW & NOTEWORTHY This study is the first to assess the effects of nutritionally induced ketogenesis by acute and subchronic intake of medium-chain fatty acids on plasma erythropoietin concentrations. Medium-chain fatty acid intake increases postprandial ketone body concentrations and within only 8 days of daily intake substantially enhances basal plasma erythropoietin concentrations in young men. We therefore reveal a dietary stimulus of endogenous circulating erythropoietin concentrations in humans, with the potential to counter anemia in cardiovascular diseases.

促红细胞生成素(EPO)是调节红细胞(红细胞)浓度的关键,主要在肾脏合成。最近的研究揭示了循环中酮体(KB)浓度升高与循环中EPO浓度之间的可能联系,然而,尚不清楚营养诱导的内源性酮生是否可以刺激人体诱导EPO。因此,本研究旨在评估急性和慢性摄入含有三酰基甘油(MCT)的中链脂肪酸(MCFA)是否会提高人体循环EPO浓度,正如之前外源性KB给药的研究所表明的那样。MCT能迅速增强内源性循环KB。该研究采用交叉设计,涉及16名年轻男性,随机顺序接受两次为期8天的MCT或能量匹配长链脂肪酸(LCFA)含三酰甘油(LCT)干预。在每次干预之前和之后进行5小时的试验天,评估循环KB和EPO浓度以及血液学参数。与LCT相比,急性摄入MCT使KB浓度持续5小时升高222%,峰值为0.7±0.1mmol·l-1(比基础值高312%)。值得注意的是,在每天摄入MCT的短短8天内,基础和空腹血浆EPO浓度增加了38%(7.19±1.14mIU⋅ml-1至9.91±1.25mIU⋅ml-1)。总之,这项研究揭示了人类循环EPO浓度的一种新的生理刺激,可能提供一种新的饮食方法来对抗心血管疾病中的贫血。
{"title":"Induction of erythropoietin by dietary medium-chain triacylglycerol in humans.","authors":"Josephine M Kanta, Annemarie Lundsgaard, Amanda Schaufuss, Maximilian Kleinert, Bente Kiens, Andreas M Fritzen","doi":"10.1152/ajpendo.00415.2024","DOIUrl":"10.1152/ajpendo.00415.2024","url":null,"abstract":"<p><p>Erythropoietin (EPO) is pivotal in regulating red blood cell (erythrocyte) concentrations and is primarily synthesized in the kidney. Recent research has unveiled a possible link between elevated circulating concentrations of ketone bodies (KB) and circulating EPO concentrations; however, it is not known whether nutritionally induced endogenous ketogenesis can be a stimulus to induce EPO in humans. Therefore, this study aimed to assess whether acute and chronic intake of medium-chain fatty acid-containing triacylglycerol (MCT), which rapidly enhances endogenous circulating KB, would elevate circulating EPO concentrations in humans, as indicated by prior work with exogenous KB administration. The study followed a crossover design involving 16 young men undergoing two 8-day MCT or energy-matched long-chain fatty acid-containing triacylglycerol (LCT) interventions in a randomized order. Five-hour test days were performed before and after each intervention, in which circulating KB and EPO concentrations as well as hematological parameters were assessed. Acute intake of MCT yielded a 222% sustained 5-h elevation in KB concentrations compared with LCT-with notable peak values of 0.7 ± 0.1 mmol·L<sup>-1</sup> (312% above basal values). Remarkably, within just 8 days of daily MCT intake an impressive 38% increase in basal, fasting plasma EPO concentrations (7.19 ± 1.14 to 9.91 ± 1.25 mIU·mL<sup>-1</sup>) was demonstrated. In conclusion, this study unveils a novel physiological stimulus of circulating EPO concentrations in humans, potentially offering a new dietary approach to counter anemia in cardiovascular diseases.<b>NEW & NOTEWORTHY</b> This study is the first to assess the effects of nutritionally induced ketogenesis by acute and subchronic intake of medium-chain fatty acids on plasma erythropoietin concentrations. Medium-chain fatty acid intake increases postprandial ketone body concentrations and within only 8 days of daily intake substantially enhances basal plasma erythropoietin concentrations in young men. We therefore reveal a dietary stimulus of endogenous circulating erythropoietin concentrations in humans, with the potential to counter anemia in cardiovascular diseases.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E210-E216"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroimmunometabolism: how metabolism orchestrates immune response in healthy and diseased brain. 神经免疫代谢:代谢如何协调健康和患病大脑的免疫反应。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2025-01-09 DOI: 10.1152/ajpendo.00331.2024
Anil Kumar Rana, Babita Bhatt, Chitralekha Gusain, Surya Narayan Biswal, Debashree Das, Mohit Kumar

Neuroimmunometabolism describes how neuroimmune cells, such as microglia, adapt their intracellular metabolic pathways to alter their immune functions in the central nervous system (CNS). Emerging evidence indicates that neurons also orchestrate the microglia-mediated immune response through neuro-immune cross talk, perhaps through metabolic signaling. However, little is known about how the brain's metabolic microenvironment and microglial intracellular metabolism orchestrate the neuroimmune response in healthy and diseased brains. This review addresses the balance of immunometabolic substrates in healthy and diseased brains, their metabolism by brain-resident microglia, and the potential impact of metabolic dysregulation of these substrates on the neuroimmune response and pathophysiology of psychiatric disorders. This review also suggests metabolic reprogramming of microglia as a preventive strategy for the management of neuroinflammation-related brain disorders, including psychiatric diseases.

神经免疫代谢描述了神经免疫细胞,如小胶质细胞,如何调整其细胞内代谢途径来改变其在中枢神经系统中的免疫功能。新出现的证据表明,神经元也可能通过代谢信号通过神经免疫串扰协调小胶质细胞介导的免疫反应。然而,关于大脑的代谢微环境和小胶质细胞内代谢如何协调健康和患病大脑的神经免疫反应,人们知之甚少。本文综述了健康和患病大脑中免疫代谢底物的平衡,脑内小胶质细胞对这些底物的代谢,以及这些底物代谢失调对神经免疫反应和精神疾病病理生理的潜在影响。这篇综述还表明,小胶质细胞的代谢重编程作为一种预防策略,可用于治疗神经炎症相关的脑部疾病,包括精神疾病。
{"title":"Neuroimmunometabolism: how metabolism orchestrates immune response in healthy and diseased brain.","authors":"Anil Kumar Rana, Babita Bhatt, Chitralekha Gusain, Surya Narayan Biswal, Debashree Das, Mohit Kumar","doi":"10.1152/ajpendo.00331.2024","DOIUrl":"10.1152/ajpendo.00331.2024","url":null,"abstract":"<p><p>Neuroimmunometabolism describes how neuroimmune cells, such as microglia, adapt their intracellular metabolic pathways to alter their immune functions in the central nervous system (CNS). Emerging evidence indicates that neurons also orchestrate the microglia-mediated immune response through neuro-immune cross talk, perhaps through metabolic signaling. However, little is known about how the brain's metabolic microenvironment and microglial intracellular metabolism orchestrate the neuroimmune response in healthy and diseased brains. This review addresses the balance of immunometabolic substrates in healthy and diseased brains, their metabolism by brain-resident microglia, and the potential impact of metabolic dysregulation of these substrates on the neuroimmune response and pathophysiology of psychiatric disorders. This review also suggests metabolic reprogramming of microglia as a preventive strategy for the management of neuroinflammation-related brain disorders, including psychiatric diseases.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E217-E229"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roux-en-Y gastric bypass alleviates kidney inflammation and improves kidney function in db/db mice by activating TLCA/TGR5 pathway. Roux-en-Y胃旁路术通过激活TLCA/TGR5通路减轻db/db小鼠肾脏炎症,改善肾功能。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2024-12-16 DOI: 10.1152/ajpendo.00248.2024
Hongmei Lang, Jie Xiang, Xiaorong Chen, Dan Tong, Lijuan Wang, Aidi Mou, Daoyan Liu, Peng Gao, Zongshi Lu, Zhiming Zhu

Diabetic kidney disease (DKD) is a severe diabetic microvascular complication featured by chronic low-grade inflammation. Roux-en-Y gastric bypass (RYGB) surgery has gained importance as a safe and effective surgery to treat DKD. Bile acids significantly change after RYGB, which brings a series of metabolic benefits, but the relationship with the improvement of DKD is unclear. Therefore, this study performed RYGB surgery on db/db mice to observe the beneficial effects of the surgery on the kidneys and performed bile acid-targeted metabolomics analysis to explore bile acid changes. We found that RYGB significantly reduced albuminuria in db/db mice, improved renal function, reversed renal structural lesions, and attenuated podocyte injury and inflammation. Notably, bile acid metabolomic analysis revealed taurolithocholic acid (TLCA) as the most significantly altered bile acid after RYGB. Furthermore, in vitro and in vivo validation experiments revealed that TLCA supplementation improved renal function and reduced renal inflammatory damage in db/db mice. In addition, TLCA inhibited high glucose-induced inflammatory damage in MPC-5 cells, and its mechanism of action may be related to activating Takeda G protein-coupled receptor 5 (TGR5), inhibiting NF-κB phosphorylation, and thus inhibiting inflammatory response. In conclusion, RYGB may play a protective role in the kidneys of diabetic mice by activating the TLCA/TGR5 pathway.NEW & NOTEWORTHY This study determined that the renal protective effect of Roux-en-Y gastric bypass (RYGB) in db/db mice was associated with elevated serum TLCA. Notably, TLCA supplementation improved renal function and alleviated podocyte inflammatory injury in db/db mice, which was associated with the TGR5/NF-κB pathway.

糖尿病肾病(DKD)是一种严重的糖尿病微血管并发症,以慢性低度炎症为特征。Roux-en-Y胃旁路手术(RYGB)作为一种安全有效的治疗DKD的手术已经变得越来越重要。RYGB后胆汁酸发生显著变化,带来一系列代谢益处,但与DKD改善的关系尚不清楚。因此,本研究对db/db小鼠进行RYGB手术,观察手术对肾脏的有益作用,并进行胆汁酸靶向代谢组学分析,探讨胆汁酸的变化。我们发现RYGB显著减少db/db小鼠的蛋白尿,改善肾功能,逆转肾脏结构病变,减轻足细胞损伤和炎症。值得注意的是,胆汁酸代谢组学分析显示,牛磺酸石胆酸(TLCA)是RYGB后改变最显著的胆汁酸。进一步的体外和体内验证实验表明,补充TLCA可以改善db/db小鼠的肾功能,减轻肾脏炎症损伤。此外,TLCA可抑制高糖诱导的MPC-5细胞炎症损伤,其作用机制可能与激活Takeda G蛋白偶联受体5 (Takeda G protein-coupled receptor 5, TGR5),抑制NF-κB磷酸化,从而抑制炎症反应有关。综上所述,RYGB可能通过激活TLCA/TGR5通路对糖尿病小鼠肾脏起到保护作用。
{"title":"Roux-en-Y gastric bypass alleviates kidney inflammation and improves kidney function in <i>db/db</i> mice by activating TLCA/TGR5 pathway.","authors":"Hongmei Lang, Jie Xiang, Xiaorong Chen, Dan Tong, Lijuan Wang, Aidi Mou, Daoyan Liu, Peng Gao, Zongshi Lu, Zhiming Zhu","doi":"10.1152/ajpendo.00248.2024","DOIUrl":"10.1152/ajpendo.00248.2024","url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) is a severe diabetic microvascular complication featured by chronic low-grade inflammation. Roux-en-Y gastric bypass (RYGB) surgery has gained importance as a safe and effective surgery to treat DKD. Bile acids significantly change after RYGB, which brings a series of metabolic benefits, but the relationship with the improvement of DKD is unclear. Therefore, this study performed RYGB surgery on <i>db/db</i> mice to observe the beneficial effects of the surgery on the kidneys and performed bile acid-targeted metabolomics analysis to explore bile acid changes. We found that RYGB significantly reduced albuminuria in <i>db/db</i> mice, improved renal function, reversed renal structural lesions, and attenuated podocyte injury and inflammation. Notably, bile acid metabolomic analysis revealed taurolithocholic acid (TLCA) as the most significantly altered bile acid after RYGB. Furthermore, in vitro and in vivo validation experiments revealed that TLCA supplementation improved renal function and reduced renal inflammatory damage in <i>db/db</i> mice. In addition, TLCA inhibited high glucose-induced inflammatory damage in MPC-5 cells, and its mechanism of action may be related to activating Takeda G protein-coupled receptor 5 (TGR5), inhibiting NF-κB phosphorylation, and thus inhibiting inflammatory response. In conclusion, RYGB may play a protective role in the kidneys of diabetic mice by activating the TLCA/TGR5 pathway.<b>NEW & NOTEWORTHY</b> This study determined that the renal protective effect of Roux-en-Y gastric bypass (RYGB) in <i>db/db</i> mice was associated with elevated serum TLCA. Notably, TLCA supplementation improved renal function and alleviated podocyte inflammatory injury in <i>db/db</i> mice, which was associated with the TGR5/NF-κB pathway.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E148-E160"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophage immunometabolism: emerging targets for regrowth in aging muscle.
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2025-01-06 DOI: 10.1152/ajpendo.00403.2024
Zachary J Fennel, Ryan M O'Connell, Micah J Drummond

The recovery from muscle atrophy is impaired with aging as characterized by improper muscle remodeling and sustained functional deficits. Age-related deficits in muscle regrowth are tightly linked with the loss of early pro-inflammatory macrophage responses and subsequent cellular dysregulation within the skeletal muscle niche. Macrophage inflammatory phenotype is regulated at the metabolic level, highlighting immunometabolism as an emerging strategy to enhance macrophage responses and restore functional muscle regrowth. Accordingly, metabolic targets with an emphasis on glycolytic, hypoxia, and redox-related pathways stand out for their role in promoting macrophage inflammation and enhancing muscle regrowth in aging. Here we highlight promising immuno-metabolic targets that could be leveraged to restore optimal pro-inflammatory macrophage function in aging and enhance muscle regrowth following muscular atrophy.

{"title":"Macrophage immunometabolism: emerging targets for regrowth in aging muscle.","authors":"Zachary J Fennel, Ryan M O'Connell, Micah J Drummond","doi":"10.1152/ajpendo.00403.2024","DOIUrl":"10.1152/ajpendo.00403.2024","url":null,"abstract":"<p><p>The recovery from muscle atrophy is impaired with aging as characterized by improper muscle remodeling and sustained functional deficits. Age-related deficits in muscle regrowth are tightly linked with the loss of early pro-inflammatory macrophage responses and subsequent cellular dysregulation within the skeletal muscle niche. Macrophage inflammatory phenotype is regulated at the metabolic level, highlighting immunometabolism as an emerging strategy to enhance macrophage responses and restore functional muscle regrowth. Accordingly, metabolic targets with an emphasis on glycolytic, hypoxia, and redox-related pathways stand out for their role in promoting macrophage inflammation and enhancing muscle regrowth in aging. Here we highlight promising immuno-metabolic targets that could be leveraged to restore optimal pro-inflammatory macrophage function in aging and enhance muscle regrowth following muscular atrophy.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":"328 2","pages":"E186-E197"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Celebrating 30 years of the discovery of leptin: a revolutionary shift in understanding obesity and metabolism. 庆祝瘦素发现30周年:理解肥胖和新陈代谢的革命性转变。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-02-01 Epub Date: 2025-01-16 DOI: 10.1152/ajpendo.00520.2024
Estefania P Azevedo
{"title":"Celebrating 30 years of the discovery of leptin: a revolutionary shift in understanding obesity and metabolism.","authors":"Estefania P Azevedo","doi":"10.1152/ajpendo.00520.2024","DOIUrl":"10.1152/ajpendo.00520.2024","url":null,"abstract":"","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E272-E273"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of physiology. Endocrinology and metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1