Jing Lu, Jiaming Meng, Gang Wu, Wulong Wei, Huabao Xie, Yanli Liu
{"title":"Th1 cells reduce the osteoblast-like phenotype in valvular interstitial cells by inhibiting NLRP3 inflammasome activation in macrophages.","authors":"Jing Lu, Jiaming Meng, Gang Wu, Wulong Wei, Huabao Xie, Yanli Liu","doi":"10.1186/s10020-024-00882-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Inflammation is initiates the propagation phase of aortic valve calcification. The activation of NLRP3 signaling in macrophages plays a crucial role in the progression of calcific aortic valve stenosis (CAVS). IFN-γ regulates NLRP3 activity in macrophages. This study aimed to explore the mechanism of IFN-γ regulation and its impact on CAVS progression and valve interstitial cell transdifferentiation.</p><p><strong>Methods and results: </strong>The number of Th1 cells and the expression of IFN-γ and STAT1 in the aortic valve, spleen and peripheral blood increased significantly as CAVS progressed. To explore the mechanisms underlying the roles of Th1 cells and IFN-γ, we treated CAVS mice with IFN-γ-AAV9 or an anti-IFN-γ neutralizing antibody. While IFN-γ promoted aortic valve calcification and dysfunction, it significantly decreased NLRP3 signaling in splenic macrophages and Ly6C<sup>+</sup> monocytes. In vitro coculture showed that Th1 cells inhibited NLPR3 activation in ox-LDL-treated macrophages through the IFN-γR1/IFN-γR2-STAT1 pathway. Compared with untreated medium, conditioned medium from Th1-treated bone marrow-derived macrophages reduced the osteogenic calcification of valvular interstitial cells.</p><p><strong>Conclusion: </strong>Inhibition of the NLRP3 inflammasome by Th1 cells protects against valvular interstitial cell calcification as a negative feedback mechanism of adaptive immunity toward innate immunity. This study provides a precision medicine strategy for CAVS based on the targeting of anti-inflammatory mechanisms.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00882-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Inflammation is initiates the propagation phase of aortic valve calcification. The activation of NLRP3 signaling in macrophages plays a crucial role in the progression of calcific aortic valve stenosis (CAVS). IFN-γ regulates NLRP3 activity in macrophages. This study aimed to explore the mechanism of IFN-γ regulation and its impact on CAVS progression and valve interstitial cell transdifferentiation.
Methods and results: The number of Th1 cells and the expression of IFN-γ and STAT1 in the aortic valve, spleen and peripheral blood increased significantly as CAVS progressed. To explore the mechanisms underlying the roles of Th1 cells and IFN-γ, we treated CAVS mice with IFN-γ-AAV9 or an anti-IFN-γ neutralizing antibody. While IFN-γ promoted aortic valve calcification and dysfunction, it significantly decreased NLRP3 signaling in splenic macrophages and Ly6C+ monocytes. In vitro coculture showed that Th1 cells inhibited NLPR3 activation in ox-LDL-treated macrophages through the IFN-γR1/IFN-γR2-STAT1 pathway. Compared with untreated medium, conditioned medium from Th1-treated bone marrow-derived macrophages reduced the osteogenic calcification of valvular interstitial cells.
Conclusion: Inhibition of the NLRP3 inflammasome by Th1 cells protects against valvular interstitial cell calcification as a negative feedback mechanism of adaptive immunity toward innate immunity. This study provides a precision medicine strategy for CAVS based on the targeting of anti-inflammatory mechanisms.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.