首页 > 最新文献

Molecular Medicine最新文献

英文 中文
The induction effect of hydroxyurea and metformin on fetal globin in the K562 cell line.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-08 DOI: 10.1186/s10020-025-01184-8
Mohammad Eini, Hossain Safarpour, Ebrahim Miri-Moghddam

Despite the established efficacy of hydroxyurea (HU) in increasing fetal hemoglobin (Hb F) levels in patients with intermedia beta-thalassemia (β-thal) and sickle cell anemia, the precise molecular mechanisms underlying these effects remain largely elusive. Understanding these mechanisms is paramount for identifying alternative therapeutic approaches to increase Hb F production while minimizing adverse effects. In this study, we employed weighted gene co-expression network analysis (WGCNA) to investigate the molecular underpinnings of γ-globin switching within GSE90878 dataset. Leveraging this information, we aimed to predict the transcriptome network and elucidate the mechanism of action of HU and Metformin (Met) on this network comprehensively. Through bioinformatic analysis, we identified IGF2BP1 and GCNT2 as key regulators of the γ-globin switching mechanism. To experimentally validate these findings, we utilized the K562 cell line as an erythroid model. Cells were treated with HU (50, 100, and 150 µM) and Met (50, 100, and 150 µM) for 24, 48, and 72 h. The expression levels of the GCNT2, γ-globin, IGF2BP1, miR-199a/b-5p, miR-451-5p and miR-144-3p were quantified using real-time polymerase chain reaction (qPCR). Our results revealed that treatment with HU (150 µM), Met (100 µM), and combination of HU-Met (150/100 µM) significantly increased IGF2BP1 expression by 6.2, 5.3, and 7.1-fold, respectively, after 24 h treatment. Furthermore, treatment with HU (50 µM), Met (50 µM) and HU/Met (50/50 µM) for 24 h led to a 3.3, 1.2, and 5-fold decrease in GCNT2 gene expression, respectively. Notably, the highest levels of γ-globin expression and Hb F production were observed with HU (100 µM), Met (50 µM), and HU/Met (100/50 µM). This study provides compelling evidence that HU and Met significantly enhance γ-globin expression and Hb F production in the K562 cell line. Our findings suggest that these drugs exert their effects by modulating the expression of IGF2BP1 and GCNT2, thus offering valuable insights into potential therapeutic strategies for disorders characterized by low Hb F levels.

{"title":"The induction effect of hydroxyurea and metformin on fetal globin in the K562 cell line.","authors":"Mohammad Eini, Hossain Safarpour, Ebrahim Miri-Moghddam","doi":"10.1186/s10020-025-01184-8","DOIUrl":"https://doi.org/10.1186/s10020-025-01184-8","url":null,"abstract":"<p><p>Despite the established efficacy of hydroxyurea (HU) in increasing fetal hemoglobin (Hb F) levels in patients with intermedia beta-thalassemia (β-thal) and sickle cell anemia, the precise molecular mechanisms underlying these effects remain largely elusive. Understanding these mechanisms is paramount for identifying alternative therapeutic approaches to increase Hb F production while minimizing adverse effects. In this study, we employed weighted gene co-expression network analysis (WGCNA) to investigate the molecular underpinnings of γ-globin switching within GSE90878 dataset. Leveraging this information, we aimed to predict the transcriptome network and elucidate the mechanism of action of HU and Metformin (Met) on this network comprehensively. Through bioinformatic analysis, we identified IGF2BP1 and GCNT2 as key regulators of the γ-globin switching mechanism. To experimentally validate these findings, we utilized the K562 cell line as an erythroid model. Cells were treated with HU (50, 100, and 150 µM) and Met (50, 100, and 150 µM) for 24, 48, and 72 h. The expression levels of the GCNT2, γ-globin, IGF2BP1, miR-199a/b-5p, miR-451-5p and miR-144-3p were quantified using real-time polymerase chain reaction (qPCR). Our results revealed that treatment with HU (150 µM), Met (100 µM), and combination of HU-Met (150/100 µM) significantly increased IGF2BP1 expression by 6.2, 5.3, and 7.1-fold, respectively, after 24 h treatment. Furthermore, treatment with HU (50 µM), Met (50 µM) and HU/Met (50/50 µM) for 24 h led to a 3.3, 1.2, and 5-fold decrease in GCNT2 gene expression, respectively. Notably, the highest levels of γ-globin expression and Hb F production were observed with HU (100 µM), Met (50 µM), and HU/Met (100/50 µM). This study provides compelling evidence that HU and Met significantly enhance γ-globin expression and Hb F production in the K562 cell line. Our findings suggest that these drugs exert their effects by modulating the expression of IGF2BP1 and GCNT2, thus offering valuable insights into potential therapeutic strategies for disorders characterized by low Hb F levels.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"132"},"PeriodicalIF":6.0,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
S-propargyl-cysteine attenuates temporomandibular joint osteoarthritis by regulating macrophage polarization via Inhibition of JAK/STAT signaling.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-07 DOI: 10.1186/s10020-025-01186-6
Wenyi Cai, Antong Wu, Zhongxiao Lin, Wei Cao, Janak L Pathak, Richard T Jaspers, Rui Li, Xin Li, Kaihan Zheng, Yufu Lin, Na Zhou, Xin Zhang, Yizhun Zhu, Qingbin Zhang

Background: Temporomandibular joint osteoarthritis (TMJ-OA) is a disease characterized by cartilage degradation and synovial inflammation, with limited effective treatment currently. Synovial macrophage polarization is pivotal in TMJ-OA progression, making it a promising therapeutic aspect. This study investigated the effects of S-propargyl-cysteine (SPRC), an endogenous H2S donor, on macrophage polarization and its therapeutic potential in alleviating TMJ-OA.

Methods: A MIA-induced TMJ-OA rat model and LPS-stimulated RAW264.7 macrophages were employed to evaluate the effects of SPRC in vivo and in vitro. TMJ bone and cartilage were analyzed via micro-CT and histological methods, while macrophage polarization markers expression were assessed via RT-qPCR, western blot, and immunofluorescence. RNA sequencing was performed on macrophages, and the JAK2/STAT3 signaling pathway was validated using the JAK2-specific inhibitor AG490. The direct effects of SPRC on rat primary condylar chondrocytes were examined by evaluating ECM synthesis and degradation. Co-culture experiments further assessed macrophage-chondrocyte interactions.

Results: SPRC significantly alleviated cartilage and bone damage in the TMJ-OA rat model, as demonstrated by improved bone volume and cartilage structure. SPRC reduced pro-inflammatory M1 macrophage infiltration and enhanced anti-inflammatory M2 macrophage polarization. SPRC effectively inhibited the JAK2/STAT3, leading to reduction of inflammatory markers, including TNF-α, IL-6, and iNOS. Co-culture experiments revealed that SPRC-treated macrophage-conditioned medium improved chondrocyte metabolic activity and restored ECM integrity.

Conclusions: SPRC-modulated macrophage polarization alleviates TMJ-OA via JAK/STAT downregulation, thereby reducing synovial inflammation and cartilage degradation. These findings position SPRC as a promising therapeutic candidate for TMJ-OA and provide insights into novel strategies targeting macrophage polarization and synovium-cartilage crosstalk.

{"title":"S-propargyl-cysteine attenuates temporomandibular joint osteoarthritis by regulating macrophage polarization via Inhibition of JAK/STAT signaling.","authors":"Wenyi Cai, Antong Wu, Zhongxiao Lin, Wei Cao, Janak L Pathak, Richard T Jaspers, Rui Li, Xin Li, Kaihan Zheng, Yufu Lin, Na Zhou, Xin Zhang, Yizhun Zhu, Qingbin Zhang","doi":"10.1186/s10020-025-01186-6","DOIUrl":"10.1186/s10020-025-01186-6","url":null,"abstract":"<p><strong>Background: </strong>Temporomandibular joint osteoarthritis (TMJ-OA) is a disease characterized by cartilage degradation and synovial inflammation, with limited effective treatment currently. Synovial macrophage polarization is pivotal in TMJ-OA progression, making it a promising therapeutic aspect. This study investigated the effects of S-propargyl-cysteine (SPRC), an endogenous H2S donor, on macrophage polarization and its therapeutic potential in alleviating TMJ-OA.</p><p><strong>Methods: </strong>A MIA-induced TMJ-OA rat model and LPS-stimulated RAW264.7 macrophages were employed to evaluate the effects of SPRC in vivo and in vitro. TMJ bone and cartilage were analyzed via micro-CT and histological methods, while macrophage polarization markers expression were assessed via RT-qPCR, western blot, and immunofluorescence. RNA sequencing was performed on macrophages, and the JAK2/STAT3 signaling pathway was validated using the JAK2-specific inhibitor AG490. The direct effects of SPRC on rat primary condylar chondrocytes were examined by evaluating ECM synthesis and degradation. Co-culture experiments further assessed macrophage-chondrocyte interactions.</p><p><strong>Results: </strong>SPRC significantly alleviated cartilage and bone damage in the TMJ-OA rat model, as demonstrated by improved bone volume and cartilage structure. SPRC reduced pro-inflammatory M1 macrophage infiltration and enhanced anti-inflammatory M2 macrophage polarization. SPRC effectively inhibited the JAK2/STAT3, leading to reduction of inflammatory markers, including TNF-α, IL-6, and iNOS. Co-culture experiments revealed that SPRC-treated macrophage-conditioned medium improved chondrocyte metabolic activity and restored ECM integrity.</p><p><strong>Conclusions: </strong>SPRC-modulated macrophage polarization alleviates TMJ-OA via JAK/STAT downregulation, thereby reducing synovial inflammation and cartilage degradation. These findings position SPRC as a promising therapeutic candidate for TMJ-OA and provide insights into novel strategies targeting macrophage polarization and synovium-cartilage crosstalk.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"128"},"PeriodicalIF":6.0,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: CYFIP1 coordinate with RNMT to induce osteosarcoma cuproptosis via AURKAIP1 m7G modification.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-07 DOI: 10.1186/s10020-025-01185-7
Zili Lin, Ziyi Wu, Yizhe He, Xiangyao Li, Wei Luo
{"title":"Correction: CYFIP1 coordinate with RNMT to induce osteosarcoma cuproptosis via AURKAIP1 m7G modification.","authors":"Zili Lin, Ziyi Wu, Yizhe He, Xiangyao Li, Wei Luo","doi":"10.1186/s10020-025-01185-7","DOIUrl":"https://doi.org/10.1186/s10020-025-01185-7","url":null,"abstract":"","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"127"},"PeriodicalIF":6.0,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ACT001 improves OVX-induced osteoporosis by suppressing the NF-κB/NLRP3 signaling pathway.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-07 DOI: 10.1186/s10020-025-01189-3
Yuan Li, Jin-Yu Yang, Ma-Li Lin, Tian-Zhu Liu, Wen-Na Lu, Ying Yang, Zhong-Cheng Liu, Jian-Heng Li, Guo-Qiang Zhang, Jian-Shuang Guo

Osteoporosis (OP) is a common systemic metabolic bone disease characterized by the decrease in bone mass and hyperactivity of osteoclasts. ACT001 is approved as an orphan drug by FDA and has shown multiple protective effects against tissue injury. However, its role in prevention of osteoclast differentiation and the underlying mechanisms have not been elucidated. Herein, we show that ACT001 inhibited RANKL-induced osteoclast differentiation and F-actin ring formation through suppressing the expression of Nfatc1, TRAP, Ctsk, Dc-stamp without obvious cytotoxicity in vitro. ACT001 restrained the phosphorylation of NF-κB and the activation of NLRP3 inflammasome, thereby decreased the expression of pyroptosis-related protein. (GSDMD, caspase-1, IL-1β, IL-18). Consistent with ACT001, the NLRP3 inflammasome inhibitor MCC950 treatment also suppressed the osteoclastogenesis through inhibiting the transcriptional activation of Nfatc1. Furthermore, ACT001 protected ovariectomy-induced bone loss in mice, reduced the number of osteoclasts, downregulated the expression of NLRP3 and IL-1β. These data indicate that ACT001 can reduce RANKL-induced osteoclast differentiation through suppressing the NF-κB/NLRP3 pathway, and attenuate the bone loss induced by estrogen-deficiency, suggesting its therapeutic potential for bone homeostasis maintenance and osteoporosis treatment.

{"title":"ACT001 improves OVX-induced osteoporosis by suppressing the NF-κB/NLRP3 signaling pathway.","authors":"Yuan Li, Jin-Yu Yang, Ma-Li Lin, Tian-Zhu Liu, Wen-Na Lu, Ying Yang, Zhong-Cheng Liu, Jian-Heng Li, Guo-Qiang Zhang, Jian-Shuang Guo","doi":"10.1186/s10020-025-01189-3","DOIUrl":"10.1186/s10020-025-01189-3","url":null,"abstract":"<p><p>Osteoporosis (OP) is a common systemic metabolic bone disease characterized by the decrease in bone mass and hyperactivity of osteoclasts. ACT001 is approved as an orphan drug by FDA and has shown multiple protective effects against tissue injury. However, its role in prevention of osteoclast differentiation and the underlying mechanisms have not been elucidated. Herein, we show that ACT001 inhibited RANKL-induced osteoclast differentiation and F-actin ring formation through suppressing the expression of Nfatc1, TRAP, Ctsk, Dc-stamp without obvious cytotoxicity in vitro. ACT001 restrained the phosphorylation of NF-κB and the activation of NLRP3 inflammasome, thereby decreased the expression of pyroptosis-related protein. (GSDMD, caspase-1, IL-1β, IL-18). Consistent with ACT001, the NLRP3 inflammasome inhibitor MCC950 treatment also suppressed the osteoclastogenesis through inhibiting the transcriptional activation of Nfatc1. Furthermore, ACT001 protected ovariectomy-induced bone loss in mice, reduced the number of osteoclasts, downregulated the expression of NLRP3 and IL-1β. These data indicate that ACT001 can reduce RANKL-induced osteoclast differentiation through suppressing the NF-κB/NLRP3 pathway, and attenuate the bone loss induced by estrogen-deficiency, suggesting its therapeutic potential for bone homeostasis maintenance and osteoporosis treatment.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"131"},"PeriodicalIF":6.0,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid metabolism reprogramming in chronic obstructive pulmonary disease.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-07 DOI: 10.1186/s10020-025-01191-9
Qianqian Liang, Yide Wang, Zheng Li

Chronic Obstructive Pulmonary Disease (COPD) is a complex and diverse respiratory disorder, characterized by ongoing respiratory symptoms and restricted airflow. The major clinical manifestations typically encompass chronic cough, sputum production, and wheezing. The main pathological characteristics involve infiltration of inflammatory cells, overproduction of mucus, and damage to the alveolar walls. The underlying causes of COPD are complex and remain incompletely elucidated, thought to originate from the combined effect of various factors. Lipids, as hydrophobic molecules, fulfill three fundamental functions: energy storage, membrane biosynthesis, and signal transduction. Lipid metabolism is intricately intertwined with various metabolic pathways and plays a pivotal role in the complex pathogenesis of COPD. Delving into lipid metabolism, as well as the particular modifications and roles of lipid molecules in cells, is of paramount importance in the context of COPD. This review primarily aims to elucidate the role of fatty acid metabolism in the onset and progression of COPD. Additionally, it examines the potential of lipid metabolism reprogramming as a promising therapeutic approach, illuminating new paths for the management and treatment of this disabling respiratory condition.

{"title":"Lipid metabolism reprogramming in chronic obstructive pulmonary disease.","authors":"Qianqian Liang, Yide Wang, Zheng Li","doi":"10.1186/s10020-025-01191-9","DOIUrl":"10.1186/s10020-025-01191-9","url":null,"abstract":"<p><p>Chronic Obstructive Pulmonary Disease (COPD) is a complex and diverse respiratory disorder, characterized by ongoing respiratory symptoms and restricted airflow. The major clinical manifestations typically encompass chronic cough, sputum production, and wheezing. The main pathological characteristics involve infiltration of inflammatory cells, overproduction of mucus, and damage to the alveolar walls. The underlying causes of COPD are complex and remain incompletely elucidated, thought to originate from the combined effect of various factors. Lipids, as hydrophobic molecules, fulfill three fundamental functions: energy storage, membrane biosynthesis, and signal transduction. Lipid metabolism is intricately intertwined with various metabolic pathways and plays a pivotal role in the complex pathogenesis of COPD. Delving into lipid metabolism, as well as the particular modifications and roles of lipid molecules in cells, is of paramount importance in the context of COPD. This review primarily aims to elucidate the role of fatty acid metabolism in the onset and progression of COPD. Additionally, it examines the potential of lipid metabolism reprogramming as a promising therapeutic approach, illuminating new paths for the management and treatment of this disabling respiratory condition.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"129"},"PeriodicalIF":6.0,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GluR2 overexpression in ACC glutamatergic neurons alleviates cancer-induced bone pain in rats.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-07 DOI: 10.1186/s10020-025-01183-9
Futing Ba, Jinrong Wei, Qi-Yan Feng, Chen-Yang Yu, Meng-Xue Song, Shufen Hu, Guang-Yin Xu, Hai-Long Zhang, Guo-Qin Jiang

Background: Cancer-induced bone pain (CIBP) is a complex chronic pain with poorly understood mechanisms. The anterior cingulate cortex (ACC) plays a critical role in processing and modulating chronic pain. This study investigates how the GluR2 receptors (calcium impermeable AMPA receptors) in ACC glutamatergic neurons regulate CIBP.

Methods: The CIBP models were established by injecting Walker 256 cells into the tibia of SD rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used as indicators of hyperalgesia. The immunofluorescence staining was employed to detect the expression of c-Fos in ACC and identify the subtypes of co-labeled c-Fos+ neurons. Real-time monitoring of calcium activity in ACC glutamatergic neurons was achieved through the fiber photometry. The excitability of glutamatergic neurons in ACC was modulated using chemicalgenetics and optogenetics techniques. The expression of GluR2 at the mRNA and protein level in ACC were assessed using RT-qPCR and Western blotting.

Results: There were significant reductions in PWT and PWL of CIBP rats after Walker 256 cell injection. The ACC of CIBP rats showed increased c-Fos expression compared to sham rats, with mainly activated c-Fos co-localized with glutamatergic neurons. Optogenetic or chemogenetic activation of ACC glutamatergic neurons led to increased hyperalgesia in sham rats, while suppression of their activity alleviated hyperalgesia in CIBP rats. Calcium activity in ACC glutamatergic neurons of CIBP rats was increased with suprathreshold stimulation of von Frey filament. Notably, surface GluR2 protein and mRNA were reduced in ACC of CIBP rats. Furthermore, overexpression of GluR2 by AAV-CaMKII-GluR2 injection was decreased c-Fos expression in ACC and alleviated hyperalgesia in CIBP rats.

Conclusions: These findings suggest that decreased surface GluR2 receptors in ACC glutamatergic neurons contribute to calcium activity and excessive excitability, thereby inducing CIBP in rats. Conversely, GluR2 overexpression in ACC glutamatergic neurons alleviates CIBP in rats. This study provides a new potential therapeutic approach for targeting the GluR2 receptor to alleviate CIBP for cancer patients.

{"title":"GluR2 overexpression in ACC glutamatergic neurons alleviates cancer-induced bone pain in rats.","authors":"Futing Ba, Jinrong Wei, Qi-Yan Feng, Chen-Yang Yu, Meng-Xue Song, Shufen Hu, Guang-Yin Xu, Hai-Long Zhang, Guo-Qin Jiang","doi":"10.1186/s10020-025-01183-9","DOIUrl":"10.1186/s10020-025-01183-9","url":null,"abstract":"<p><strong>Background: </strong>Cancer-induced bone pain (CIBP) is a complex chronic pain with poorly understood mechanisms. The anterior cingulate cortex (ACC) plays a critical role in processing and modulating chronic pain. This study investigates how the GluR2 receptors (calcium impermeable AMPA receptors) in ACC glutamatergic neurons regulate CIBP.</p><p><strong>Methods: </strong>The CIBP models were established by injecting Walker 256 cells into the tibia of SD rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used as indicators of hyperalgesia. The immunofluorescence staining was employed to detect the expression of c-Fos in ACC and identify the subtypes of co-labeled c-Fos<sup>+</sup> neurons. Real-time monitoring of calcium activity in ACC glutamatergic neurons was achieved through the fiber photometry. The excitability of glutamatergic neurons in ACC was modulated using chemicalgenetics and optogenetics techniques. The expression of GluR2 at the mRNA and protein level in ACC were assessed using RT-qPCR and Western blotting.</p><p><strong>Results: </strong>There were significant reductions in PWT and PWL of CIBP rats after Walker 256 cell injection. The ACC of CIBP rats showed increased c-Fos expression compared to sham rats, with mainly activated c-Fos co-localized with glutamatergic neurons. Optogenetic or chemogenetic activation of ACC glutamatergic neurons led to increased hyperalgesia in sham rats, while suppression of their activity alleviated hyperalgesia in CIBP rats. Calcium activity in ACC glutamatergic neurons of CIBP rats was increased with suprathreshold stimulation of von Frey filament. Notably, surface GluR2 protein and mRNA were reduced in ACC of CIBP rats. Furthermore, overexpression of GluR2 by AAV-CaMKII-GluR2 injection was decreased c-Fos expression in ACC and alleviated hyperalgesia in CIBP rats.</p><p><strong>Conclusions: </strong>These findings suggest that decreased surface GluR2 receptors in ACC glutamatergic neurons contribute to calcium activity and excessive excitability, thereby inducing CIBP in rats. Conversely, GluR2 overexpression in ACC glutamatergic neurons alleviates CIBP in rats. This study provides a new potential therapeutic approach for targeting the GluR2 receptor to alleviate CIBP for cancer patients.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"130"},"PeriodicalIF":6.0,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chlorophyllin exerts synergistic anti-tumor effect with gemcitabine in pancreatic cancer by inducing cuproptosis. 叶绿素与吉西他滨通过诱导杯突酶对胰腺癌产生协同抗肿瘤作用
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-04 DOI: 10.1186/s10020-025-01180-y
Jiaqiang Ren, Tong Su, Jiachun Ding, Fan Chen, Jiantao Mo, Jie Li, Zheng Wang, Liang Han, Zheng Wu, Shuai Wu

Pancreatic cancer (PC) has high lethality due to multiple reasons, and its limited response to conventional chemotherapy like gemcitabine (GEM) is a non-negligible one. Therefore, our study introduces Chlorophyllin (CHL) as an effective therapeutic candidate to enhance the therapeutic efficacy of GEM. Our results demonstrate that the combination of CHL and GEM exhibits a significant synergistic anti-tumor effect by targeting multiple oncogenic processes in PC, including inhibiting cell proliferation, invasion, and migration, as well as inducing cell apoptosis. Further investigations of mechanism have revealed that CHL induces cuproptosis in PC cells through a multifaceted process, involving depleting cellular intracellular glutathione (GSH), increasing reactive oxygen species (ROS) levels, and subsequently upregulating the HSP70 protein in response to heightened oxidative stress. Additionally, CHL releases free Cu2+, binds to the Ferredoxin 1 (FDX1) protein, and ultimately leads to the oligomerization of Dihydrolipoamide S-Acetyltransferase (DLAT) proteins to amplify the copper toxicity within PC cells. Moreover, in vivo experiments have demonstrated that the combination of CHL and GEM effectively inhibits the growth of subcutaneously transplanted tumors while maintaining a favorable biosafety profile. In conclusion, our study identifies CHL as a potent enhancer of GEM's anti-tumor effects in PC through the induction of cuproptosis, thus providing a novel therapeutic avenue for patients with PC.

{"title":"Chlorophyllin exerts synergistic anti-tumor effect with gemcitabine in pancreatic cancer by inducing cuproptosis.","authors":"Jiaqiang Ren, Tong Su, Jiachun Ding, Fan Chen, Jiantao Mo, Jie Li, Zheng Wang, Liang Han, Zheng Wu, Shuai Wu","doi":"10.1186/s10020-025-01180-y","DOIUrl":"10.1186/s10020-025-01180-y","url":null,"abstract":"<p><p>Pancreatic cancer (PC) has high lethality due to multiple reasons, and its limited response to conventional chemotherapy like gemcitabine (GEM) is a non-negligible one. Therefore, our study introduces Chlorophyllin (CHL) as an effective therapeutic candidate to enhance the therapeutic efficacy of GEM. Our results demonstrate that the combination of CHL and GEM exhibits a significant synergistic anti-tumor effect by targeting multiple oncogenic processes in PC, including inhibiting cell proliferation, invasion, and migration, as well as inducing cell apoptosis. Further investigations of mechanism have revealed that CHL induces cuproptosis in PC cells through a multifaceted process, involving depleting cellular intracellular glutathione (GSH), increasing reactive oxygen species (ROS) levels, and subsequently upregulating the HSP70 protein in response to heightened oxidative stress. Additionally, CHL releases free Cu<sup>2+</sup>, binds to the Ferredoxin 1 (FDX1) protein, and ultimately leads to the oligomerization of Dihydrolipoamide S-Acetyltransferase (DLAT) proteins to amplify the copper toxicity within PC cells. Moreover, in vivo experiments have demonstrated that the combination of CHL and GEM effectively inhibits the growth of subcutaneously transplanted tumors while maintaining a favorable biosafety profile. In conclusion, our study identifies CHL as a potent enhancer of GEM's anti-tumor effects in PC through the induction of cuproptosis, thus providing a novel therapeutic avenue for patients with PC.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"126"},"PeriodicalIF":6.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143788648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotective effect of riboflavin kinase on cerebral ischemia injury in rats.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-02 DOI: 10.1186/s10020-025-01170-0
Yingxin Zou, Minghua Ruan, Xu Feng, Fei Liu, Weihong Liu, Song Chen, Zhiyong Chu

Background: Riboflavin kinase (RFK, also called flavokinase) is a catalytic enzyme that converts riboflavin to its active form in vivo. Dysfunction of the RFK gene has been associated with susceptibility to ischemic stroke. However, the protective role and mechanisms of RFK in ischemic stroke have not been elucidated.

Methods: Lentivirus-mediated RFK knock-up (RFK( +)) and knock-down (RFK(-)) were used to investigate the protective effect and mechanism of RFK in the rat middle cerebral artery occlusion (MCAO) model in vivo and in the oxygen and glucose deprivation (OGD) model of neurons in vitro; and the dependence of the protective effect of RFK on flavins was also investigated.

Results: We demonstrated that RFK was an endogenous protein against ischemia brain injury both in vivo and in vitro experiments. RFK inhibited cerebral infarction, cerebral edema and neuronal apoptosis after cerebral ischemia. Its mechanisms include inhibition of the protein expression of Caspase 12 and Caspase 3 induced by cerebral ischemia, and thus inhibiting endoplasmic reticulum stress (ERS) and neuronal apoptosis; the protective effect of RFK depends on the presence of the flavoprotein Ero1; exogenous riboflavin supplementation protected cortical neurons from ischemic injury and prolonged the lifespan in stroke-prone spontaneously hypertensive rats with low RFK gene function, but this protective effect is limited and cannot completely reverse the decreasing trend of neuronal tolerance to ischemic injury caused by RFK gene dysfunction; the protective effect of RFK against ischemic injury is independent of the presence of flavins and their concentrations.

Conclusions: The present study demonstrates that RFK is an important regulatory molecule against ischemia brain injury and its mechanism involves inhibition of ERS. The protective effect of RFK is independent of the presence of flavins and their concentrations. RFK deserves further investigation as a promising target gene for the detection of stroke susceptibility. Flavins may be used as a preventive or adjunctive treatments for ischemic brain injury.

{"title":"Neuroprotective effect of riboflavin kinase on cerebral ischemia injury in rats.","authors":"Yingxin Zou, Minghua Ruan, Xu Feng, Fei Liu, Weihong Liu, Song Chen, Zhiyong Chu","doi":"10.1186/s10020-025-01170-0","DOIUrl":"10.1186/s10020-025-01170-0","url":null,"abstract":"<p><strong>Background: </strong>Riboflavin kinase (RFK, also called flavokinase) is a catalytic enzyme that converts riboflavin to its active form in vivo. Dysfunction of the RFK gene has been associated with susceptibility to ischemic stroke. However, the protective role and mechanisms of RFK in ischemic stroke have not been elucidated.</p><p><strong>Methods: </strong>Lentivirus-mediated RFK knock-up (RFK( +)) and knock-down (RFK(-)) were used to investigate the protective effect and mechanism of RFK in the rat middle cerebral artery occlusion (MCAO) model in vivo and in the oxygen and glucose deprivation (OGD) model of neurons in vitro; and the dependence of the protective effect of RFK on flavins was also investigated.</p><p><strong>Results: </strong>We demonstrated that RFK was an endogenous protein against ischemia brain injury both in vivo and in vitro experiments. RFK inhibited cerebral infarction, cerebral edema and neuronal apoptosis after cerebral ischemia. Its mechanisms include inhibition of the protein expression of Caspase 12 and Caspase 3 induced by cerebral ischemia, and thus inhibiting endoplasmic reticulum stress (ERS) and neuronal apoptosis; the protective effect of RFK depends on the presence of the flavoprotein Ero1; exogenous riboflavin supplementation protected cortical neurons from ischemic injury and prolonged the lifespan in stroke-prone spontaneously hypertensive rats with low RFK gene function, but this protective effect is limited and cannot completely reverse the decreasing trend of neuronal tolerance to ischemic injury caused by RFK gene dysfunction; the protective effect of RFK against ischemic injury is independent of the presence of flavins and their concentrations.</p><p><strong>Conclusions: </strong>The present study demonstrates that RFK is an important regulatory molecule against ischemia brain injury and its mechanism involves inhibition of ERS. The protective effect of RFK is independent of the presence of flavins and their concentrations. RFK deserves further investigation as a promising target gene for the detection of stroke susceptibility. Flavins may be used as a preventive or adjunctive treatments for ischemic brain injury.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"125"},"PeriodicalIF":6.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966939/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143772689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Layer-specific molecular signatures of colon anastomotic healing and leakage in mice.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 DOI: 10.1186/s10020-025-01167-9
Hilal Sengul, Vasiliki Bantavi, Laura Gloeck, Andrew Y F Li Yim, Patrick Leven, Patrik Efferz, Bianca Schneiker, Mariola Lysson, Wouter J De Jonge, Sven Wehner

Background: Colon anastomotic leakage (CAL) is a postoperative complication originating from disturbed colon anastomotic healing (CAH). Wound healing involves several well-coordinated stages, which have not been comprehensively studied for CAH or CAL. This study aims to provide transcriptional profiles of different intestinal layers of anastomotic tissues throughout distinct healing stages and to identify CAL-related genes.

Methods: Proximal colon anastomosis was constructed with 8 interrupted sutures in mice. Six hours, 24 h and 72 h after surgery, anastomotic complications were assessed. Transcriptional profiles of inner (mucosa and submucosa) and outer (muscularis externa) layer of the anastomotic and naive control tissues were analyzed with 3' bulk mRNA sequencing to identify the layer-specific healing and leakage pathways. Selective target genes differing between CAL and CAH were measured for their protein expression.

Results: Our data indicate that the mucosa/submucosa and muscularis externa enter inflammation stage at 6 h, proliferation stage at 24 h and tissue remodeling stage at 72 h during CAH. We observed that transcription profiles of the mucosa/submucosa, but not the muscularis externa, differ between CAH and CAL. Particularly, genes related to extracellular remodeling (including Col18a1 and Col16a1) and wound healing (Pdpn and Timp1) showed lower expression in the mucosa/submucosa of CAL tissue compared to CAH. Conformingly, protein levels for collagens as well IL-34 were decreased in CAL, while the TGF-β-pseudo-receptor BAMBI was increased in CAL compared to CAH tissues.

Conclusions: Mucosa/submucosa and muscularis externa are mostly in synchronization during the inflammation, proliferation, and extracellular remodeling stages during CAH. Transcriptional profiles within the anastomotic mucosa/submucosa differ between CAH and CAL in genes related to extracellular modelling and wound healing, indicating that genes of these pathways may contribute to CAL.

背景:结肠吻合口漏(CAL)是结肠吻合口愈合障碍(CAH)引起的术后并发症。伤口愈合包括几个协调良好的阶段,目前尚未对 CAH 或 CAL 进行全面研究。本研究旨在提供吻合口组织不同肠层在不同愈合阶段的转录谱,并确定与 CAL 相关的基因:方法:用 8 根间断缝合线为小鼠构建近端结肠吻合口。方法:用 8 根间断缝合线为小鼠构建近端结肠吻合口,分别在术后 6 小时、24 小时和 72 小时评估吻合口并发症。通过3'bulk mRNA测序分析了吻合口内层(粘膜和粘膜下层)和外层(外侧肌层)以及正常对照组组织的转录谱,以确定各层特异性愈合和渗漏途径。对 CAL 和 CAH 之间不同的选择性靶基因进行了蛋白质表达测定:结果:我们的数据表明,在 CAH 期间,粘膜/粘膜下层和外层肌分别于 6 小时、24 小时和 72 小时进入炎症期、增殖期和组织重塑期。我们观察到,CAH 和 CAL 的粘膜/粘膜下层的转录谱不同,但外部肌层的转录谱不同。特别是,与细胞外重塑(包括 Col18a1 和 Col16a1)和伤口愈合(Pdpn 和 Timp1)相关的基因在 CAL 组织的粘膜/粘膜下层的表达量低于 CAH。同样,与 CAH 组织相比,CAL 组织中胶原蛋白和 IL-34 蛋白水平降低,而 TGF-β 伪受体 BAMBI 水平升高:结论:在CAH的炎症、增殖和细胞外重塑阶段,粘膜/粘膜下层和肌层大多处于同步状态。CAH和CAL的吻合口粘膜/粘膜下与细胞外重塑和伤口愈合相关的基因转录谱不同,表明这些通路的基因可能对CAL有影响。
{"title":"Layer-specific molecular signatures of colon anastomotic healing and leakage in mice.","authors":"Hilal Sengul, Vasiliki Bantavi, Laura Gloeck, Andrew Y F Li Yim, Patrick Leven, Patrik Efferz, Bianca Schneiker, Mariola Lysson, Wouter J De Jonge, Sven Wehner","doi":"10.1186/s10020-025-01167-9","DOIUrl":"10.1186/s10020-025-01167-9","url":null,"abstract":"<p><strong>Background: </strong>Colon anastomotic leakage (CAL) is a postoperative complication originating from disturbed colon anastomotic healing (CAH). Wound healing involves several well-coordinated stages, which have not been comprehensively studied for CAH or CAL. This study aims to provide transcriptional profiles of different intestinal layers of anastomotic tissues throughout distinct healing stages and to identify CAL-related genes.</p><p><strong>Methods: </strong>Proximal colon anastomosis was constructed with 8 interrupted sutures in mice. Six hours, 24 h and 72 h after surgery, anastomotic complications were assessed. Transcriptional profiles of inner (mucosa and submucosa) and outer (muscularis externa) layer of the anastomotic and naive control tissues were analyzed with 3' bulk mRNA sequencing to identify the layer-specific healing and leakage pathways. Selective target genes differing between CAL and CAH were measured for their protein expression.</p><p><strong>Results: </strong>Our data indicate that the mucosa/submucosa and muscularis externa enter inflammation stage at 6 h, proliferation stage at 24 h and tissue remodeling stage at 72 h during CAH. We observed that transcription profiles of the mucosa/submucosa, but not the muscularis externa, differ between CAH and CAL. Particularly, genes related to extracellular remodeling (including Col18a1 and Col16a1) and wound healing (Pdpn and Timp1) showed lower expression in the mucosa/submucosa of CAL tissue compared to CAH. Conformingly, protein levels for collagens as well IL-34 were decreased in CAL, while the TGF-β-pseudo-receptor BAMBI was increased in CAL compared to CAH tissues.</p><p><strong>Conclusions: </strong>Mucosa/submucosa and muscularis externa are mostly in synchronization during the inflammation, proliferation, and extracellular remodeling stages during CAH. Transcriptional profiles within the anastomotic mucosa/submucosa differ between CAH and CAL in genes related to extracellular modelling and wound healing, indicating that genes of these pathways may contribute to CAL.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"124"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extrachromosomal circular DNA as a novel biomarker for the progression of colorectal cancer.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 DOI: 10.1186/s10020-025-01164-y
Quanpeng Qiu, Yi Ding, Xiaolong Guo, Jing Han, Jiaqi Zhang, Yaping Liu, Junjun She, Yinnan Chen

Background: Extrachromosomal circular DNA (eccDNA) has potential in tumor diagnosis, particularly for improving diagnostic accuracy and early cancer detection; however, many challenges remain in its application to clinical practice.

Methods: We conducted a Circle-Seq analysis on clinical samples at different stages of colorectal cancer progression to examine the dynamic changes of eccDNA during the progression of colorectal cancer. We used breakpoint-specific PCR to verify candidate eccDNAs identified by Circle-Seq. The results were further validated using the AOM/DSS-induced colorectal cancer model.

Results: There was an increase in the abundance of eccDNA with the progression of colorectal cancer. The genes associated with these eccDNA molecules were primarily related to signaling pathways involved in tumor development and metastasis. Our analysis also revealed that eccDNA abundance positively correlates with gene expression, and eccDNA derived from specific genes has potential value for the early diagnosis of tumors.

Conclusions: This study revealed a connection between eccDNA and colorectal cancer progression and highlights the clinical potential of eccDNA for the early diagnosis of colorectal cancer.

{"title":"Extrachromosomal circular DNA as a novel biomarker for the progression of colorectal cancer.","authors":"Quanpeng Qiu, Yi Ding, Xiaolong Guo, Jing Han, Jiaqi Zhang, Yaping Liu, Junjun She, Yinnan Chen","doi":"10.1186/s10020-025-01164-y","DOIUrl":"10.1186/s10020-025-01164-y","url":null,"abstract":"<p><strong>Background: </strong>Extrachromosomal circular DNA (eccDNA) has potential in tumor diagnosis, particularly for improving diagnostic accuracy and early cancer detection; however, many challenges remain in its application to clinical practice.</p><p><strong>Methods: </strong>We conducted a Circle-Seq analysis on clinical samples at different stages of colorectal cancer progression to examine the dynamic changes of eccDNA during the progression of colorectal cancer. We used breakpoint-specific PCR to verify candidate eccDNAs identified by Circle-Seq. The results were further validated using the AOM/DSS-induced colorectal cancer model.</p><p><strong>Results: </strong>There was an increase in the abundance of eccDNA with the progression of colorectal cancer. The genes associated with these eccDNA molecules were primarily related to signaling pathways involved in tumor development and metastasis. Our analysis also revealed that eccDNA abundance positively correlates with gene expression, and eccDNA derived from specific genes has potential value for the early diagnosis of tumors.</p><p><strong>Conclusions: </strong>This study revealed a connection between eccDNA and colorectal cancer progression and highlights the clinical potential of eccDNA for the early diagnosis of colorectal cancer.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"123"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1