How estimating nuisance parameters can reduce the variance (with consistent variance estimation).

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics in Medicine Pub Date : 2024-10-15 Epub Date: 2024-07-30 DOI:10.1002/sim.10164
Judith J Lok
{"title":"How estimating nuisance parameters can reduce the variance (with consistent variance estimation).","authors":"Judith J Lok","doi":"10.1002/sim.10164","DOIUrl":null,"url":null,"abstract":"<p><p>We often estimate a parameter of interest <math> <semantics><mrow><mi>ψ</mi></mrow> <annotation>$$ \\psi $$</annotation></semantics> </math> when the identifying conditions involve a finite-dimensional nuisance parameter <math> <semantics><mrow><mi>θ</mi> <mo>∈</mo> <msup><mrow><mi>ℝ</mi></mrow> <mrow><mi>d</mi></mrow> </msup> </mrow> <annotation>$$ \\theta \\in {\\mathbb{R}}^d $$</annotation></semantics> </math> . Examples from causal inference are inverse probability weighting, marginal structural models and structural nested models, which all lead to unbiased estimating equations. This article presents a consistent sandwich estimator for the variance of estimators <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> that solve unbiased estimating equations including <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> which is also estimated by solving unbiased estimating equations. This article presents four additional results for settings where <math> <semantics> <mrow> <mover><mrow><mi>θ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\theta} $$</annotation></semantics> </math> solves (partial) score equations and <math> <semantics><mrow><mi>ψ</mi></mrow> <annotation>$$ \\psi $$</annotation></semantics> </math> does not depend on <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> . This includes many causal inference settings where <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> describes the treatment probabilities, missing data settings where <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> describes the missingness probabilities, and measurement error settings where <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> describes the error distribution. These four additional results are: (1) Counter-intuitively, the asymptotic variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> is typically smaller when <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> is estimated. (2) If estimating <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> is ignored, the sandwich estimator for the variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> is conservative. (3) A consistent sandwich estimator for the variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> . (4) If <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> with the true <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> plugged in is efficient, the asymptotic variance of <math> <semantics> <mrow> <mover><mrow><mi>ψ</mi></mrow> <mo>^</mo></mover> </mrow> <annotation>$$ \\hat{\\psi} $$</annotation></semantics> </math> does not depend on whether <math> <semantics><mrow><mi>θ</mi></mrow> <annotation>$$ \\theta $$</annotation></semantics> </math> is estimated. To illustrate we use observational data to calculate confidence intervals for (1) the effect of cazavi versus colistin on bacterial infections and (2) how the effect of antiretroviral treatment depends on its initiation time in HIV-infected patients.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"4456-4480"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10164","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We often estimate a parameter of interest ψ $$ \psi $$ when the identifying conditions involve a finite-dimensional nuisance parameter θ d $$ \theta \in {\mathbb{R}}^d $$ . Examples from causal inference are inverse probability weighting, marginal structural models and structural nested models, which all lead to unbiased estimating equations. This article presents a consistent sandwich estimator for the variance of estimators ψ ^ $$ \hat{\psi} $$ that solve unbiased estimating equations including θ $$ \theta $$ which is also estimated by solving unbiased estimating equations. This article presents four additional results for settings where θ ^ $$ \hat{\theta} $$ solves (partial) score equations and ψ $$ \psi $$ does not depend on θ $$ \theta $$ . This includes many causal inference settings where θ $$ \theta $$ describes the treatment probabilities, missing data settings where θ $$ \theta $$ describes the missingness probabilities, and measurement error settings where θ $$ \theta $$ describes the error distribution. These four additional results are: (1) Counter-intuitively, the asymptotic variance of ψ ^ $$ \hat{\psi} $$ is typically smaller when θ $$ \theta $$ is estimated. (2) If estimating θ $$ \theta $$ is ignored, the sandwich estimator for the variance of ψ ^ $$ \hat{\psi} $$ is conservative. (3) A consistent sandwich estimator for the variance of ψ ^ $$ \hat{\psi} $$ . (4) If ψ ^ $$ \hat{\psi} $$ with the true θ $$ \theta $$ plugged in is efficient, the asymptotic variance of ψ ^ $$ \hat{\psi} $$ does not depend on whether θ $$ \theta $$ is estimated. To illustrate we use observational data to calculate confidence intervals for (1) the effect of cazavi versus colistin on bacterial infections and (2) how the effect of antiretroviral treatment depends on its initiation time in HIV-infected patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估计干扰参数如何减少方差(使用一致的方差估计)。
当识别条件涉及有限维滋扰参数θ ∈ ℝ d $ $ \theta \in {\mathbb{R}}^d $$时,我们经常会估计一个感兴趣的参数ψ $ $ \psi $$。因果推理中的例子包括反概率加权、边际结构模型和结构嵌套模型,它们都能得到无偏估计方程。本文提出了一个一致的三明治估计器,用于求解无偏估计方程的估计器ψ ^ $$\hat{\psi} $$的方差,包括θ $$ \theta $$,该估计器也是通过求解无偏估计方程来估计的。本文针对θ ^ $$ \hat{\theta} $$求解(部分)分数方程且ψ $$ \psi $$不依赖于θ $$ \theta $$的情况提出了另外四个结果。这包括许多因果推理设置,其中θ $$ \theta $$描述了处理概率;缺失数据设置,其中θ $$ \theta $$描述了缺失概率;以及测量误差设置,其中θ $$ \theta $$描述了误差分布。这四个额外结果是(1) 与直觉相反,当估计 θ $ \theta $$ 时,ψ ^ $$ \hat{\psi} $$ 的渐近方差通常较小。(2) 如果忽略估计 θ $ \theta $$,ψ ^ $$ \hat{psi} $$方差的三明治估计器是保守的。(3) ψ ^ $ $ \hat{psi} $ $方差的一致的三明治估计器。 (4) 如果插入真实θ $ \theta $的ψ ^ $ $ \hat{psi} $是有效的,则ψ ^ $ $ \hat{psi} $的渐近方差不取决于是否估计了θ $ \theta $。为了说明这一点,我们使用观察数据来计算以下内容的置信区间:(1) 卡扎维与可乐定对细菌感染的影响;(2) 抗逆转录病毒治疗的效果如何取决于其在 HIV 感染者中的启动时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
期刊最新文献
Bayesian Modeling of Cancer Outcomes Using Genetic Variables Assisted by Pathological Imaging Data. Matching-Assisted Power Prior for Incorporating Real-World Data in Randomized Clinical Trial Analysis. Multiple Imputation for Longitudinal Data: A Tutorial. Reverse Time-to-Death as Time-Scale in Time-to-Event Analysis for Studies of Advanced Illness and Palliative Care. A Bayesian Multivariate Model With Temporal Dependence on Random Partition of Areal Data for Mosquito-Borne Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1