Tania Miguel Trabajo, Eavan Dorcey, Jan Roelof van der Meer
{"title":"Bacttle: a microbiology educational board game for lay public and schools.","authors":"Tania Miguel Trabajo, Eavan Dorcey, Jan Roelof van der Meer","doi":"10.1128/jmbe.00097-24","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by the positive impact of serious games on science understanding and motivated by personal interests in scientific outreach, we developed \"Bacttle,\" an easy-to-play microbiology board game with adaptive difficulty, targeting any player from 7 years old onward. Bacttle addresses both the lay public and teachers for use in classrooms as a way of introducing microbiology concepts. The layout of the game and its mechanism are the result of multiple rounds of trial, feedback, and re-design. The final version consists of a deck of cards, a 3D-printed board, and tokens (with a paper-based alternative), with all digital content open source. Players in Bacttle take on the character of a bacterial species. The aim for each species is to proliferate under the environmental conditions of the board and the interactions with the board and with other players, which vary as the play evolves. Players start with a given number of lives that will increase or decrease based on the traits they play for different environmental scenarios. Such bacterial traits come in the form of cards that can be deployed strategically. To assess the impact of the game on microbiological knowledge, we scored differences in the understanding of general concepts before and after playing the game. We assessed a total of 169 visitors at two different university open-day science fairs. Players were asked to fill out a brief survey before and after the game with questions targeting conceptual advances. Results show that Bacttle increases general microbiology knowledge on players as young as 5 years old and with the highest impact on those who have no <i>a priori</i> microbiology comprehension.</p>","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":" ","pages":"e0009724"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360538/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology & Biology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/jmbe.00097-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by the positive impact of serious games on science understanding and motivated by personal interests in scientific outreach, we developed "Bacttle," an easy-to-play microbiology board game with adaptive difficulty, targeting any player from 7 years old onward. Bacttle addresses both the lay public and teachers for use in classrooms as a way of introducing microbiology concepts. The layout of the game and its mechanism are the result of multiple rounds of trial, feedback, and re-design. The final version consists of a deck of cards, a 3D-printed board, and tokens (with a paper-based alternative), with all digital content open source. Players in Bacttle take on the character of a bacterial species. The aim for each species is to proliferate under the environmental conditions of the board and the interactions with the board and with other players, which vary as the play evolves. Players start with a given number of lives that will increase or decrease based on the traits they play for different environmental scenarios. Such bacterial traits come in the form of cards that can be deployed strategically. To assess the impact of the game on microbiological knowledge, we scored differences in the understanding of general concepts before and after playing the game. We assessed a total of 169 visitors at two different university open-day science fairs. Players were asked to fill out a brief survey before and after the game with questions targeting conceptual advances. Results show that Bacttle increases general microbiology knowledge on players as young as 5 years old and with the highest impact on those who have no a priori microbiology comprehension.