PoroFluidics: deterministic fluid control in porous microfluidics†

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2024-07-31 DOI:10.1039/D4LC00518J
Zhongzheng Wang, Louis Jun Ye Ong, Yixiang Gan, Jean-Michel Pereira, Jun Zhang, Surasak Kasetsirikul, Yi-Chin Toh and Emilie Sauret
{"title":"PoroFluidics: deterministic fluid control in porous microfluidics†","authors":"Zhongzheng Wang, Louis Jun Ye Ong, Yixiang Gan, Jean-Michel Pereira, Jun Zhang, Surasak Kasetsirikul, Yi-Chin Toh and Emilie Sauret","doi":"10.1039/D4LC00518J","DOIUrl":null,"url":null,"abstract":"<p >Microfluidic devices with open lattice structures, equivalent to a type of porous media, allow for the manipulation of fluid transport processes while having distinct structural, mechanical, and thermal properties. However, a fundamental understanding of the design principles for the solid structure in order to achieve consistent and desired flow patterns remains a challenge, preventing its further development and wider applications. Here, through quantitative and mechanistic analyses of the behavior of multi-phase phenomena that involve gas–liquid–solid interfaces, we present a design framework for microfluidic devices containing porous architectures (referred to as poroFluidics) for deterministic control of multi-phase fluid transport processes. We show that the essential properties of the fluids and solid, including viscosity, interfacial tension, wettability, as well as solid manufacture resolution, can be incorporated into the design to achieve consistent flow in porous media, where the desired spatial and temporal fluid invasion sequence can be realized. Experiments and numerical simulations reveal that different preferential flow pathways can be controlled by solid geometry, flow conditions, or fluid/solid properties. Our design framework enables precise, multifunctional, and dynamic control of multi-phase transport within engineered porous media.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00518j","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidic devices with open lattice structures, equivalent to a type of porous media, allow for the manipulation of fluid transport processes while having distinct structural, mechanical, and thermal properties. However, a fundamental understanding of the design principles for the solid structure in order to achieve consistent and desired flow patterns remains a challenge, preventing its further development and wider applications. Here, through quantitative and mechanistic analyses of the behavior of multi-phase phenomena that involve gas–liquid–solid interfaces, we present a design framework for microfluidic devices containing porous architectures (referred to as poroFluidics) for deterministic control of multi-phase fluid transport processes. We show that the essential properties of the fluids and solid, including viscosity, interfacial tension, wettability, as well as solid manufacture resolution, can be incorporated into the design to achieve consistent flow in porous media, where the desired spatial and temporal fluid invasion sequence can be realized. Experiments and numerical simulations reveal that different preferential flow pathways can be controlled by solid geometry, flow conditions, or fluid/solid properties. Our design framework enables precise, multifunctional, and dynamic control of multi-phase transport within engineered porous media.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PoroFluidics:多孔微流体中的确定性流体控制
具有开放式晶格结构的微流体设备相当于一种多孔介质,可以操纵流体传输过程,同时具有独特的结构、机械和热特性。然而,如何从根本上理解固体结构的设计原理,以实现一致且理想的流动模式,仍然是一项挑战,阻碍了其进一步发展和广泛应用。在此,我们通过对涉及气-液-固界面的多相现象的行为进行定量和机理分析,为包含多孔结构的微流体设备(简称为 poroFluidics)提出了一个设计框架,以实现对多相流体传输过程的确定性控制。我们表明,流体和固体的基本特性,包括粘度、界面张力、润湿性以及固体制造分辨率,都可以纳入设计中,以实现多孔介质中的一致流动,从而实现所需的空间和时间流体侵入序列。实验和数值模拟显示,固体几何形状、流动条件或流体/固体特性可以控制不同的优先流动路径。我们的设计框架可对工程多孔介质中的多相传输进行精确、多功能和动态控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
Rapid Identification of Bacterial isolates Using Microfluidic Adaptive Channels and Multiplexed Fluorescence Microscopy A Potential Assay Towards Rapid miRNA Detection from Skin Interstitial Fluid Using a Hydrogel Microneedle Patch Integrated with DNA Probe and Graphene Oxide CRISPR for companion diagnostics in low-resource settings Development of in vitro model of exosome transport in microfluidic gut-brain axis-on-a-chip. Investigating the impact of the interstitial fluid flow and hypoxia interface on cancer biology using a spheroid-on-chip perfusion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1