Flexible High-Temperature Polymer Dielectrics Induced by Ultraviolet Radiation for High Efficient Energy Storage

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-31 DOI:10.1002/adfm.202316869
Jia-Yao Pei, Jing Zhu, Li-Juan Yin, Yu Zhao, Minhao Yang, Shao-Long Zhong, Qi-Kun Feng, Zhi-Min Dang
{"title":"Flexible High-Temperature Polymer Dielectrics Induced by Ultraviolet Radiation for High Efficient Energy Storage","authors":"Jia-Yao Pei, Jing Zhu, Li-Juan Yin, Yu Zhao, Minhao Yang, Shao-Long Zhong, Qi-Kun Feng, Zhi-Min Dang","doi":"10.1002/adfm.202316869","DOIUrl":null,"url":null,"abstract":"Polymer-based dielectrics with fast electrostatic energy storage and release, are crucial for advanced electronics and power systems. However, the deterioration of insulation performance and charge–discharge efficiency of polymer dielectrics at elevated temperatures and high electric fields hinder the applications of capacitors in harsh environments. Herein, a facile and scalable approach is reported to fabricating flexible high-temperature polymer dielectrics for high-efficiency energy storage by ultraviolet irradiation. The resultant dielectric films exhibit an augment of 493% in energy density and exceeding 800% in discharge efficiency at 200 °C (3.2 J cm<sup>−3</sup> and over 90% discharge efficiency at 480 M V<sup>−1</sup>m for irradiated polyetherimide (PEI), 0.54 J cm<sup>−3,</sup> and below 10% discharge efficiency at 400 MV m<sup>−1</sup> for pristine PEI) and excellent cycle performance. The injected space charge is found to be the dominant contributor to energy loss during the charge–discharge process. Free radicals introduced by ultraviolet irradiation can act as deep traps to capture injected charge and suppress space charge migration. This work clarifies the contribution of space charge to energy loss and demonstrates the effectiveness of ultraviolet irradiation in improving the capacitive performance of high-temperature polymer dielectrics. These findings provide a novel paradigm for the rational design of high-temperature polymer dielectrics for high-efficiency energy storage.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202316869","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer-based dielectrics with fast electrostatic energy storage and release, are crucial for advanced electronics and power systems. However, the deterioration of insulation performance and charge–discharge efficiency of polymer dielectrics at elevated temperatures and high electric fields hinder the applications of capacitors in harsh environments. Herein, a facile and scalable approach is reported to fabricating flexible high-temperature polymer dielectrics for high-efficiency energy storage by ultraviolet irradiation. The resultant dielectric films exhibit an augment of 493% in energy density and exceeding 800% in discharge efficiency at 200 °C (3.2 J cm−3 and over 90% discharge efficiency at 480 M V−1m for irradiated polyetherimide (PEI), 0.54 J cm−3, and below 10% discharge efficiency at 400 MV m−1 for pristine PEI) and excellent cycle performance. The injected space charge is found to be the dominant contributor to energy loss during the charge–discharge process. Free radicals introduced by ultraviolet irradiation can act as deep traps to capture injected charge and suppress space charge migration. This work clarifies the contribution of space charge to energy loss and demonstrates the effectiveness of ultraviolet irradiation in improving the capacitive performance of high-temperature polymer dielectrics. These findings provide a novel paradigm for the rational design of high-temperature polymer dielectrics for high-efficiency energy storage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紫外线辐射诱导的柔性高温聚合物电介质用于高效储能
具有快速静电能量存储和释放功能的聚合物电介质对先进的电子和电力系统至关重要。然而,在高温和高电场条件下,聚合物电介质的绝缘性能和充放电效率会下降,这阻碍了电容器在恶劣环境中的应用。本文报告了一种简便且可扩展的方法,即通过紫外线辐照制造用于高效储能的柔性高温聚合物电介质。所制备的电介质薄膜在 200 °C 时的能量密度提高了 493%,放电效率超过 800%(经辐照的聚醚酰亚胺(PEI)在 480 MV m-1m 下的能量密度为 3.2 J cm-3,放电效率超过 90%;原始 PEI 在 400 MV m-1 下的能量密度为 0.54 J cm-3,放电效率低于 10%),并且具有优异的循环性能。在充放电过程中,注入的空间电荷是造成能量损失的主要因素。紫外线照射引入的自由基可作为深阱捕获注入电荷并抑制空间电荷迁移。这项研究澄清了空间电荷对能量损耗的贡献,并证明了紫外线辐照在改善高温聚合物电介质电容性能方面的有效性。这些发现为合理设计用于高效储能的高温聚合物电介质提供了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Achieving Eu2+ Luminescence at Trivalent Lattice Site in Rb3Y(PO4)2:Eu toward Multicolor Emissions by Carbon and Hydrogen Coreduction Tailoring Nanocrystalline/Amorphous Interfaces to Enhance Oxygen Evolution Reaction Performance for FeNi-Based Alloy Fibers Laser Patterning for 2D Lateral and Vertical VS2/MoS2 Metal/Semiconducting Heterostructures Construction of Through-Space Charge-Transfer Nanoparticles for Facilely Realizing High-Performance NIR-II Cancer Phototheranostics A Supercapacitor Driven by MXene Nanofluid Gel Electrolyte Induced the Synergistic High Ionic Migration Rate and Excellent Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1