Enhancing Water Tolerance and N2 Selectivity in NH3–SCR Catalysts by Protecting Mn Oxide Nanoparticles in a Silicalite-1 Layer

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-07-31 DOI:10.1021/acs.est.4c01585
Sarah Komaty, Marram Andijani, Ning Wang, Juan Carlos Navarro de Miguel, Sudheesh Kumar Veeranmaril, Mohamed Nejib Hedhili, Cristina I. Q. Silva, Yan Wang, Mohamad Abou-Daher, Yu Han, Javier Ruiz-Martinez
{"title":"Enhancing Water Tolerance and N2 Selectivity in NH3–SCR Catalysts by Protecting Mn Oxide Nanoparticles in a Silicalite-1 Layer","authors":"Sarah Komaty, Marram Andijani, Ning Wang, Juan Carlos Navarro de Miguel, Sudheesh Kumar Veeranmaril, Mohamed Nejib Hedhili, Cristina I. Q. Silva, Yan Wang, Mohamad Abou-Daher, Yu Han, Javier Ruiz-Martinez","doi":"10.1021/acs.est.4c01585","DOIUrl":null,"url":null,"abstract":"Mn-based catalysts are promising candidates for eliminating harmful nitrogen oxides (NO<sub><i>x</i></sub>) via selective catalytic reduction with ammonia (NH<sub>3</sub>–SCR) due to their inherent strong redox abilities. However, poor water tolerance and low N<sub>2</sub> selectivity are still the main limitations for practical applications. Herein, we succeeded in preparing an active catalyst for NH<sub>3</sub>–SCR with improved water tolerance and N<sub>2</sub> selectivity based on protecting MnO<sub><i>x</i></sub> with a secondary growth of a hydrophobic silicalite-1. This protection suppressed catalyst deactivation by water adsorption. Interestingly, impregnating MnO<sub><i>x</i></sub> on MesoTS-1 followed by silicalite-1 protection allowed for a higher dispersion of MnO<sub><i>x</i></sub> species, thus increasing the concentration of acid sites. Consequently, the level of N<sub>2</sub>O formation is decreased. These improvements resulted in a broader operating temperature of NO<sub><i>x</i></sub> conversion and a modification of the NH<sub>3</sub>–SCR mechanism. Diffuse reflectance infrared Fourier transform spectroscopy analysis revealed that unprotected Mn/MesoTS-1 mainly followed the Eley–Rideal mechanism, while Mn/MesoTS-1@S1 followed both Langmuir–Hinshelwood and Eley–Rideal mechanisms.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c01585","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mn-based catalysts are promising candidates for eliminating harmful nitrogen oxides (NOx) via selective catalytic reduction with ammonia (NH3–SCR) due to their inherent strong redox abilities. However, poor water tolerance and low N2 selectivity are still the main limitations for practical applications. Herein, we succeeded in preparing an active catalyst for NH3–SCR with improved water tolerance and N2 selectivity based on protecting MnOx with a secondary growth of a hydrophobic silicalite-1. This protection suppressed catalyst deactivation by water adsorption. Interestingly, impregnating MnOx on MesoTS-1 followed by silicalite-1 protection allowed for a higher dispersion of MnOx species, thus increasing the concentration of acid sites. Consequently, the level of N2O formation is decreased. These improvements resulted in a broader operating temperature of NOx conversion and a modification of the NH3–SCR mechanism. Diffuse reflectance infrared Fourier transform spectroscopy analysis revealed that unprotected Mn/MesoTS-1 mainly followed the Eley–Rideal mechanism, while Mn/MesoTS-1@S1 followed both Langmuir–Hinshelwood and Eley–Rideal mechanisms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过在硅胶-1 层中保护氧化锰纳米颗粒提高 NH3-SCR 催化剂的耐水性和 N2 选择性
锰基催化剂因其固有的强氧化还原能力,有望通过氨的选择性催化还原(NH3-SCR)消除有害的氮氧化物(NOx)。然而,耐水性差和 N2 选择性低仍然是实际应用的主要限制因素。在此,我们利用疏水性硅铝酸盐-1 的二次生长保护氧化锰,成功制备出一种具有更好耐水性和 N2 选择性的 NH3-SCR 活性催化剂。这种保护可抑制催化剂因吸附水而失活。有趣的是,将氧化锰浸渍在 MesoTS-1 上,然后用硅铝酸盐-1 进行保护,可以提高氧化锰的分散性,从而增加酸性位点的浓度。因此,N2O 的形成水平降低了。这些改进提高了氮氧化物转化的工作温度,并改变了 NH3-SCR 机制。漫反射红外傅立叶变换光谱分析显示,未受保护的 Mn/MesoTS-1 主要遵循 Eley-Rideal 机制,而 Mn/MesoTS-1@S1 则同时遵循 Langmuir-Hinshelwood 和 Eley-Rideal 机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Toward More Realistic Estimates of Product Displacement in Life Cycle Assessment. 2-Ethylhexyl Diphenyl Phosphate Induces Autism Spectrum Disorder-Like Behaviors in Offspring Mice by Disrupting Postsynaptic Development. Dynamic Surface Incorporation of Pb2+ Ions at the Actively Dissolving Calcite (104) Surface. Energy-Saving Mechanism of Wastewater Treatment Process Adaptation on Natural Temperature Variation: The Case from Coking Wastewater. New Drinking Water Genome Catalog Identifies a Globally Distributed Bacterial Genus Adapted to Disinfected Drinking Water Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1