Understanding the Intermittency of the Wintertime North Atlantic Oscillation and East Atlantic Pattern Seasonal Forecast Skill in the Copernicus C3S Multi-Model Ensemble

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-07-31 DOI:10.1029/2024GL108472
L. H. Baker, L. C. Shaffrey, S. J. Johnson, A. Weisheimer
{"title":"Understanding the Intermittency of the Wintertime North Atlantic Oscillation and East Atlantic Pattern Seasonal Forecast Skill in the Copernicus C3S Multi-Model Ensemble","authors":"L. H. Baker,&nbsp;L. C. Shaffrey,&nbsp;S. J. Johnson,&nbsp;A. Weisheimer","doi":"10.1029/2024GL108472","DOIUrl":null,"url":null,"abstract":"<p>The wintertime North Atlantic Oscillation (NAO) and East Atlantic Pattern (EA) are the two leading modes of North Atlantic pressure variability and have a substantial impact on winter weather in Europe. The year-to-year contributions to multi-model seasonal forecast skill in the Copernicus C3S ensemble of seven prediction systems are assessed for the wintertime NAO and EA, and well-forecast and poorly-forecast years are identified. Years with high NAO predictability are associated with substantial tropical forcing, generally from the El Niño Southern Oscillation (ENSO), while poor forecasts of the NAO occur when ENSO forcing is weak. Well-forecast EA winters also generally occurred when there was substantial tropical forcing, although the relationship was less robust than for the NAO. These results support previous findings of the impacts of tropical forcing on the North Atlantic and show this is important from a multi-model seasonal forecasting perspective.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL108472","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL108472","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The wintertime North Atlantic Oscillation (NAO) and East Atlantic Pattern (EA) are the two leading modes of North Atlantic pressure variability and have a substantial impact on winter weather in Europe. The year-to-year contributions to multi-model seasonal forecast skill in the Copernicus C3S ensemble of seven prediction systems are assessed for the wintertime NAO and EA, and well-forecast and poorly-forecast years are identified. Years with high NAO predictability are associated with substantial tropical forcing, generally from the El Niño Southern Oscillation (ENSO), while poor forecasts of the NAO occur when ENSO forcing is weak. Well-forecast EA winters also generally occurred when there was substantial tropical forcing, although the relationship was less robust than for the NAO. These results support previous findings of the impacts of tropical forcing on the North Atlantic and show this is important from a multi-model seasonal forecasting perspective.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解哥白尼 C3S 多模式集合中冬季北大西洋涛动和东大西洋模式季节性预报技能的间歇性
冬季北大西洋涛动(NAO)和东大西洋模式(EA)是北大西洋气压变化的两种主要模式,对欧洲的冬季天气有重大影响。针对冬季北大西洋涛动(NAO)和东大西洋模式(EA),评估了由七个预测系统组成的哥白尼 C3S 组合对多模式季节性预测技能的逐年贡献,并确定了预测良好和预测不佳的年份。NAO可预测性高的年份通常与厄尔尼诺南方涛动(ENSO)产生的大量热带强迫有关,而当ENSO强迫较弱时,NAO的预测就会较差。预测良好的 EA 冬季一般也出现在有大量热带影响的情况下,尽管这种关系不如对 NAO 的预测那么稳健。这些结果支持了以前关于热带强迫对北大西洋影响的研究结果,并表明从多模式季节预报的角度来看,这一点非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Evidence of a New Population of Weak Terrestrial Gamma-Ray Flashes Observed From Aircraft Altitude The Origin of the Lehmann Discontinuity Beneath the Ancient Craton: Insight From the High Pressure-Temperature Elasticity Measurements of Topaz Detectable Continental Crust in the Earth's Deep Interior Inferred From Thermodynamic Modeling JIRAM Observations of Volcanic Flux on Io: Distribution and Comparison to Tidal Heat Flow Models Rapid Downwelling of Tracer Particles Across the Boundary Layer and Into the Pycnocline at Submesoscale Ocean Fronts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1