Local Electric Field Accelerates Zn2+ Diffusion Kinetics for Zn-V Battery

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-07-31 DOI:10.1002/aenm.202402416
Huibin Liu, Xiaohan Hou, Shiyuan Fan, Mingjun Cen, Zhuo Chen, Bin Chen, Chen Yuan, Wenchao Peng, Yang Li, Xiaobin Fan
{"title":"Local Electric Field Accelerates Zn2+ Diffusion Kinetics for Zn-V Battery","authors":"Huibin Liu, Xiaohan Hou, Shiyuan Fan, Mingjun Cen, Zhuo Chen, Bin Chen, Chen Yuan, Wenchao Peng, Yang Li, Xiaobin Fan","doi":"10.1002/aenm.202402416","DOIUrl":null,"url":null,"abstract":"Vanadium-based aqueous zinc-ion batteries (AZIBs) exhibit significant potential for large-scale energy storage applications, attributed to their inherent safety characteristics. Addressing the slow transport kinetics of divalent Zn<sup>2+</sup> within the cathode lattice, thereby enhancing the rate capability and stability, is essential for the Zn-V battery system. In this study, a local electric field (LEF) strategy is introduced to accelerate the Zn<sup>2+</sup> diffusion by creating abundant oxygen vacancies (Ov) in V<sub>2</sub>O<sub>5</sub>. Comprehensive characterization and density functional theory (DFT) calculations reveal the formation of the Ov induced atomic-level donor-acceptor couple configuration, verify and visualize the LEF. The fabricated LEF-enhanced vanadium oxide (LEF-VO) exhibits exceptional rate capability, achieving 338.3 mA h g<sup>−1</sup> at a current density of 10 A g<sup>−1</sup>, and maintaining 66.4% of its capacity over a range from 0.2 to 20 A g<sup>−1</sup>. Furthermore, the influence of the LEF on expediting Zn<sup>2+</sup> diffusion kinetics is elucidated, correlating to the electrical force. This novel LEF approach offers valuable insights for advancing high-rate cathode materials.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202402416","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vanadium-based aqueous zinc-ion batteries (AZIBs) exhibit significant potential for large-scale energy storage applications, attributed to their inherent safety characteristics. Addressing the slow transport kinetics of divalent Zn2+ within the cathode lattice, thereby enhancing the rate capability and stability, is essential for the Zn-V battery system. In this study, a local electric field (LEF) strategy is introduced to accelerate the Zn2+ diffusion by creating abundant oxygen vacancies (Ov) in V2O5. Comprehensive characterization and density functional theory (DFT) calculations reveal the formation of the Ov induced atomic-level donor-acceptor couple configuration, verify and visualize the LEF. The fabricated LEF-enhanced vanadium oxide (LEF-VO) exhibits exceptional rate capability, achieving 338.3 mA h g−1 at a current density of 10 A g−1, and maintaining 66.4% of its capacity over a range from 0.2 to 20 A g−1. Furthermore, the influence of the LEF on expediting Zn2+ diffusion kinetics is elucidated, correlating to the electrical force. This novel LEF approach offers valuable insights for advancing high-rate cathode materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部电场加速 Zn-V 电池的 Zn2+ 扩散动力学
钒基水性锌离子电池(AZIBs)因其固有的安全特性,在大规模储能应用方面具有巨大潜力。解决二价 Zn2+ 在阴极晶格内的缓慢传输动力学问题,从而提高速率能力和稳定性,对于锌-钒电池系统至关重要。本研究采用局部电场(LEF)策略,通过在 V2O5 中产生大量氧空位(Ov)来加速 Zn2+ 的扩散。综合表征和密度泛函理论(DFT)计算揭示了氧空位诱导的原子级供体-受体耦合构型的形成,验证并展示了局部电场。制备的 LEF 增强氧化钒(LEF-VO)表现出卓越的速率能力,在电流密度为 10 A g-1 时可达到 338.3 mA h g-1,并在 0.2 至 20 A g-1 的范围内保持 66.4% 的容量。此外,还阐明了 LEF 对加快 Zn2+ 扩散动力学的影响,并与电场力相关联。这种新颖的 LEF 方法为推动高倍率阴极材料的发展提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Thermal-Assisted Photosynthesis of Nitric Acid From Air Mitigating VOC Loss in Single-Junction and Four-Terminal Tandem Perovskite/Si Photovoltaics with D-A Phthalocyanines Layers Flour-Infused Dry Processed Electrode Enhancing Lithium-Ion Battery Performance Flexible Perovskite Solar Cells on Polycarbonate Film Substrates Advances and Prospects of Carbon Dots for High-Performance Zinc-Based Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1