Xiao Wang, Zhulu Song, Haodong Tang, Yiwen Li, Huaying Zhong, Jiufeng Wu, Weichao Wang, Simin Chen, Wenjie Zhang, Fan Fang, Junjie Hao, Dan Wu, Peter Müller-Buschbaum, Leifeng Cao, Zeguo Tang, Jun Tang, Lei Zhang, Kai Wang, Wei Chen
{"title":"Synergic Surface Modifications of PbS Quantum Dots by Sodium Acetate in Solid-State Ligand Exchange toward Short-Wave Infrared Photodetectors.","authors":"Xiao Wang, Zhulu Song, Haodong Tang, Yiwen Li, Huaying Zhong, Jiufeng Wu, Weichao Wang, Simin Chen, Wenjie Zhang, Fan Fang, Junjie Hao, Dan Wu, Peter Müller-Buschbaum, Leifeng Cao, Zeguo Tang, Jun Tang, Lei Zhang, Kai Wang, Wei Chen","doi":"10.1021/acsami.4c05201","DOIUrl":null,"url":null,"abstract":"<p><p>PbS quantum dots (QDs) are promising for short-wave infrared (SWIR) photodetection and imaging. Solid-state ligand exchange (SSLE) is a low-fabrication-threshold QD solid fabrication method. However, QD treatment by SSLE remains challenging in seeking refined surface passivation to achieve the desired device performance. This work investigates using NaAc in the ligand exchange process to enhance the film morphology and electronic coupling configuration of QD solids. By implementing various film and photodetector device characterization studies, we confirm that adding NaAc with a prominent adding ratio of 20 wt % NaAc with tetrabutylammonium iodide (TBAI) in the SSLE leads to an improved film morphology, reduced surface roughness, and decreased trap states in the QD solid films. Moreover, compared to the devices without NaAc treatment, those fabricated with NaAc-treated QD solids exhibit an enhanced performance, including lower dark current density (<100 nA/cm<sup>2</sup>), faster response speed, higher responsivity, detectivity, and external quantum efficiency (EQE reaching 25%). The discoveries can be insightful in developing efficient, low-cost, and low-fabrication-threshold QD SWIR detection and imager applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"44164-44173"},"PeriodicalIF":8.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c05201","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
PbS quantum dots (QDs) are promising for short-wave infrared (SWIR) photodetection and imaging. Solid-state ligand exchange (SSLE) is a low-fabrication-threshold QD solid fabrication method. However, QD treatment by SSLE remains challenging in seeking refined surface passivation to achieve the desired device performance. This work investigates using NaAc in the ligand exchange process to enhance the film morphology and electronic coupling configuration of QD solids. By implementing various film and photodetector device characterization studies, we confirm that adding NaAc with a prominent adding ratio of 20 wt % NaAc with tetrabutylammonium iodide (TBAI) in the SSLE leads to an improved film morphology, reduced surface roughness, and decreased trap states in the QD solid films. Moreover, compared to the devices without NaAc treatment, those fabricated with NaAc-treated QD solids exhibit an enhanced performance, including lower dark current density (<100 nA/cm2), faster response speed, higher responsivity, detectivity, and external quantum efficiency (EQE reaching 25%). The discoveries can be insightful in developing efficient, low-cost, and low-fabrication-threshold QD SWIR detection and imager applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.