Tailored Bioactive Glass Coating: Navigating Devitrification Toward a Superior Implant Performance.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-08-12 Epub Date: 2024-08-01 DOI:10.1021/acsbiomaterials.4c01032
Anustup Chakraborty, Subhadip Bodhak, Indrajit Tah, Shashi Kant, Debolina Saha, Krishna K Dey, Neelima Gupta, Manasi Ghosh, Sucheta Tripathy, Amarnath R Allu, Kaushik Biswas
{"title":"Tailored Bioactive Glass Coating: Navigating Devitrification Toward a Superior Implant Performance.","authors":"Anustup Chakraborty, Subhadip Bodhak, Indrajit Tah, Shashi Kant, Debolina Saha, Krishna K Dey, Neelima Gupta, Manasi Ghosh, Sucheta Tripathy, Amarnath R Allu, Kaushik Biswas","doi":"10.1021/acsbiomaterials.4c01032","DOIUrl":null,"url":null,"abstract":"<p><p>The development of well-adherent, amorphous, and bioactive glass coatings for metallic implants remains a critical challenge in biomedical engineering. Traditional bioactive glasses are susceptible to crystallization and exhibit a thermal expansion mismatch with implant materials. This study introduces a novel approach to overcome these limitations by employing systematic Na<sub>2</sub>O substitution with CaO in borosilicate glasses. In-depth structural analysis (MD simulations, Raman spectroscopy, and NMR) reveals a denser network with smaller silicate rings, enhancing thermal stability, reducing thermal expansion, and influencing dissolution kinetics. This tailored composition exhibited optimal bioactivity (<i>in vitro</i> formation of bone-like apatite within 3 days) and a coefficient of thermal expansion closely matching Ti-6Al-4V, a widely used implant material. Furthermore, a consolidation process, meticulously designed with insights from crystallization kinetics and the viscosity-temperature relationship, yielded a crack-free, amorphous coating on Ti-6Al-4V substrates. This novel coating demonstrates excellent cytocompatibility and strong antibacterial action, suggesting superior clinical potential compared with existing technologies.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01032","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of well-adherent, amorphous, and bioactive glass coatings for metallic implants remains a critical challenge in biomedical engineering. Traditional bioactive glasses are susceptible to crystallization and exhibit a thermal expansion mismatch with implant materials. This study introduces a novel approach to overcome these limitations by employing systematic Na2O substitution with CaO in borosilicate glasses. In-depth structural analysis (MD simulations, Raman spectroscopy, and NMR) reveals a denser network with smaller silicate rings, enhancing thermal stability, reducing thermal expansion, and influencing dissolution kinetics. This tailored composition exhibited optimal bioactivity (in vitro formation of bone-like apatite within 3 days) and a coefficient of thermal expansion closely matching Ti-6Al-4V, a widely used implant material. Furthermore, a consolidation process, meticulously designed with insights from crystallization kinetics and the viscosity-temperature relationship, yielded a crack-free, amorphous coating on Ti-6Al-4V substrates. This novel coating demonstrates excellent cytocompatibility and strong antibacterial action, suggesting superior clinical potential compared with existing technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定制生物活性玻璃涂层:引导蜕变,实现卓越的植入性能。
为金属植入物开发具有良好附着力的非晶态生物活性玻璃涂层仍然是生物医学工程领域的一项重大挑战。传统的生物活性玻璃容易结晶,并表现出与植入体材料的热膨胀不匹配。本研究通过在硼硅玻璃中系统地用 CaO 替代 Na2O,提出了一种克服这些局限性的新方法。深入的结构分析(MD 模拟、拉曼光谱和核磁共振)揭示了一种具有较小硅酸盐环的致密网络,从而提高了热稳定性、降低了热膨胀并影响了溶解动力学。这种定制的成分表现出最佳的生物活性(体外 3 天内形成类骨磷灰石),其热膨胀系数与广泛使用的植入材料 Ti-6Al-4V 非常接近。此外,根据结晶动力学和粘度与温度的关系精心设计的固结过程,在 Ti-6Al-4V 基质上形成了无裂纹、无定形的涂层。这种新型涂层具有出色的细胞相容性和强大的抗菌作用,与现有技术相比具有更高的临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Electrostimulation-Based Decellularized Matrix Bladder Patch Promotes Bladder Repair in Rats. Rapidly Degrading Hydrogels to Support Biofabrication and 3D Bioprinting Using Cartilage Microtissues. Mechanical and Bioactive Properties of PMMA Bone Cement: A Review. Filament Disturbance and Fusion during Embedded 3D Printing of Silicones. Rapid Real-Time PCR Based on Core-Shell Tecto-Dendrimer-Entrapped Au Nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1