Engineering the Activity of a Template-Independent DNA Polymerase.

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2024-08-16 Epub Date: 2024-07-31 DOI:10.1021/acssynbio.4c00255
Marija Milisavljevic, Teresa Rojas Rodriguez, Courtney K Carlson, Chang C Liu, Keith E J Tyo
{"title":"Engineering the Activity of a Template-Independent DNA Polymerase.","authors":"Marija Milisavljevic, Teresa Rojas Rodriguez, Courtney K Carlson, Chang C Liu, Keith E J Tyo","doi":"10.1021/acssynbio.4c00255","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymatic DNA writing technologies based on the template-independent DNA polymerase terminal deoxynucleotidyl transferase (TdT) have the potential to advance DNA information storage. TdT is unique in its ability to synthesize single-stranded DNA de novo but has limitations, including catalytic inhibition by ribonucleotide presence and slower incorporation rates compared to replicative polymerases. We anticipate that protein engineering can improve, modulate, and tailor the enzyme's properties, but there is limited information on TdT sequence-structure-function relationships to facilitate rational approaches. Therefore, we developed an easily modifiable screening assay that can measure the TdT activity in high-throughput to evaluate large TdT mutant libraries. We demonstrated the assay's capabilities by engineering TdT mutants that exhibit both improved catalytic efficiency and improved activity in the presence of an inhibitor. We screened for and identified TdT variants with greater catalytic efficiency in both selectively incorporating deoxyribonucleotides and in the presence of deoxyribonucleotide/ribonucleotide mixes. Using this information from the screening assay, we rationally engineered other TdT homologues with the same properties. The emulsion-based assay we developed is, to the best of our knowledge, the first high-throughput screening assay that can measure TdT activity quantitatively and without the need for protein purification.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00255","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymatic DNA writing technologies based on the template-independent DNA polymerase terminal deoxynucleotidyl transferase (TdT) have the potential to advance DNA information storage. TdT is unique in its ability to synthesize single-stranded DNA de novo but has limitations, including catalytic inhibition by ribonucleotide presence and slower incorporation rates compared to replicative polymerases. We anticipate that protein engineering can improve, modulate, and tailor the enzyme's properties, but there is limited information on TdT sequence-structure-function relationships to facilitate rational approaches. Therefore, we developed an easily modifiable screening assay that can measure the TdT activity in high-throughput to evaluate large TdT mutant libraries. We demonstrated the assay's capabilities by engineering TdT mutants that exhibit both improved catalytic efficiency and improved activity in the presence of an inhibitor. We screened for and identified TdT variants with greater catalytic efficiency in both selectively incorporating deoxyribonucleotides and in the presence of deoxyribonucleotide/ribonucleotide mixes. Using this information from the screening assay, we rationally engineered other TdT homologues with the same properties. The emulsion-based assay we developed is, to the best of our knowledge, the first high-throughput screening assay that can measure TdT activity quantitatively and without the need for protein purification.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模板依赖型 DNA 聚合酶的工程活性。
基于独立于模板的 DNA 聚合酶末端脱氧核苷酸转移酶(TdT)的酶促 DNA 写入技术有可能推动 DNA 信息的存储。TdT 的独特之处在于它能从头合成单链 DNA,但它也有局限性,包括核糖核苷酸的存在会抑制其催化,而且与复制聚合酶相比,其合成速度较慢。我们预计蛋白质工程学可以改善、调节和定制该酶的特性,但有关 TdT 序列-结构-功能关系的信息有限,无法促进合理的方法。因此,我们开发了一种易于修改的筛选测定法,可以高通量测量 TdT 活性,以评估大型 TdT 突变体库。我们对 TdT 突变体进行了工程设计,这些突变体既提高了催化效率,又提高了在抑制剂存在下的活性,从而证明了该检测方法的能力。我们筛选并确定了在选择性结合脱氧核苷酸和存在脱氧核苷酸/核糖核苷酸混合物时催化效率更高的 TdT 变体。利用从筛选试验中获得的这些信息,我们合理地设计了具有相同特性的其他 TdT 同源物。据我们所知,我们开发的这种基于乳液的检测方法是第一种可以定量测量 TdT 活性且无需纯化蛋白质的高通量筛选检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Genetically Encoded Trensor Circuits Report HeLa Cell Treatment with Polyplexed Plasmid DNA and Small-Molecule Transfection Modulators. Orthogonal Serine Integrases Enable Scalable Gene Storage Cascades in Bacterial Genome. Computational Synthetic Biology Enabled through JAX: A Showcase. Dynamically Regulating Homologous Recombination Enables Precise Genome Editing in Ogataea polymorpha. Integrating Deep Learning and Synthetic Biology: A Co-Design Approach for Enhancing Gene Expression via N-Terminal Coding Sequences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1