Revealing the Structural Intricacies of Biomembrane-Interfaced Emulsions with Small- and Ultra-Small-Angle Neutron Scattering.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-08-01 DOI:10.1002/smtd.202400348
Mark Louis P Vidallon, Ashley P Williams, Mitchell J Moon, Haikun Liu, Sylvain Trépout, Alexis I Bishop, Boon Mian Teo, Rico F Tabor, Karlheinz Peter, Liliana de Campo, Xiaowei Wang
{"title":"Revealing the Structural Intricacies of Biomembrane-Interfaced Emulsions with Small- and Ultra-Small-Angle Neutron Scattering.","authors":"Mark Louis P Vidallon, Ashley P Williams, Mitchell J Moon, Haikun Liu, Sylvain Trépout, Alexis I Bishop, Boon Mian Teo, Rico F Tabor, Karlheinz Peter, Liliana de Campo, Xiaowei Wang","doi":"10.1002/smtd.202400348","DOIUrl":null,"url":null,"abstract":"<p><p>Utilizing cell membranes from diverse cell types for biointerfacing has demonstrated significant advantages in enhancing colloidal stability and incorporating biological properties, tailored specifically for various biomedical applications. However, the structures of these materials, particularly emulsions interfaced with red blood cell (RBC) or platelet (PLT) membranes, remain an underexplored area. This study systematically employs small- and ultra-small-angle neutron scattering (SANS and USANS) with contrast variation to investigate the structure of emulsions containing perfluorohexane within RBC (RBC/PFH) and PLT membranes (PLT/PFH). The findings reveal that the scattering length density of RBC and PLT membranes is 1.5 × 10<sup>-6</sup> Å<sup>-2</sup>, similar to 30% (w/w) deuterium oxide. Using this solvent as a cell membrane-matching medium, estimated droplet diameters are 770 nm (RBC/PFH) and 1.5 µm (PLT/PFH), based on polydispersed sphere model fitting. Intriguingly, calculated patterns and invariant analysis reveal native droplet architectures featuring entirely liquid PFH cores, differing significantly from the observed bubble-droplet core system in electron microscopy. This highlights the advantage of SANS and USANS in differentiating genuine colloidal structures in complex dispersions. In summary, this work underscores the pivotal role of SANS and USANS in characterizing biointerfaced colloids and in uncovering novel colloidal structures with significant potential for biomedical applications and clinical translation.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400348","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing cell membranes from diverse cell types for biointerfacing has demonstrated significant advantages in enhancing colloidal stability and incorporating biological properties, tailored specifically for various biomedical applications. However, the structures of these materials, particularly emulsions interfaced with red blood cell (RBC) or platelet (PLT) membranes, remain an underexplored area. This study systematically employs small- and ultra-small-angle neutron scattering (SANS and USANS) with contrast variation to investigate the structure of emulsions containing perfluorohexane within RBC (RBC/PFH) and PLT membranes (PLT/PFH). The findings reveal that the scattering length density of RBC and PLT membranes is 1.5 × 10-6 Å-2, similar to 30% (w/w) deuterium oxide. Using this solvent as a cell membrane-matching medium, estimated droplet diameters are 770 nm (RBC/PFH) and 1.5 µm (PLT/PFH), based on polydispersed sphere model fitting. Intriguingly, calculated patterns and invariant analysis reveal native droplet architectures featuring entirely liquid PFH cores, differing significantly from the observed bubble-droplet core system in electron microscopy. This highlights the advantage of SANS and USANS in differentiating genuine colloidal structures in complex dispersions. In summary, this work underscores the pivotal role of SANS and USANS in characterizing biointerfaced colloids and in uncovering novel colloidal structures with significant potential for biomedical applications and clinical translation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用小角和超小角中子散射揭示生物膜界面乳液的复杂结构
利用不同细胞类型的细胞膜进行生物界面,在提高胶体稳定性和结合生物特性方面具有显著优势,特别适合各种生物医学应用。然而,这些材料的结构,尤其是与红细胞(RBC)或血小板(PLT)膜界面的乳液,仍然是一个尚未充分开发的领域。本研究系统地采用了具有对比度变化的小角和超小角中子散射(SANS 和 USANS)技术来研究红细胞膜(RBC/PFH)和血小板膜(PLT/PFH)内含有全氟己烷的乳液结构。研究结果表明,RBC 和 PLT 膜的散射长度密度为 1.5 × 10-6 Å-2,与 30%(重量比)的氧化氘相似。使用这种溶剂作为细胞膜匹配介质,根据多分散球模型拟合,估计液滴直径为 770 nm(RBC/PFH)和 1.5 µm(PLT/PFH)。耐人寻味的是,计算模式和不变性分析揭示了以完全液态的 PFH 为核心的原生液滴结构,与电子显微镜观察到的气泡-液滴核心系统大相径庭。这凸显了 SANS 和 USANS 在区分复杂分散体中真正胶体结构方面的优势。总之,这项工作强调了 SANS 和 USANS 在表征生物界面胶体和发现新型胶体结构方面的关键作用,它们在生物医学应用和临床转化方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
30th Anniversary of the Department of Chemistry, City University of Hong Kong. AI-Equipped Scanning Probe Microscopy for Autonomous Site-Specific Atomic-Level Characterization at Room Temperature. Evaluation of Pharmacokinetics, Immunogenicity, and Immunotoxicity of DNA Tetrahedral and DNA Polymeric Nanostructures. Strain Field Around Individual Dislocations Controls Failure. Electronic Engineering of Crystalline/Amorphous CoP/FeCoPx Nanoarrays for Efficient Water Electrolysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1