{"title":"Impact of cardiac patch alignment on restoring post-infarct ventricular function","authors":"Koen L. P. M. Janssens, Peter H. M. Bovendeerd","doi":"10.1007/s10237-024-01877-9","DOIUrl":null,"url":null,"abstract":"<div><p>Acute myocardial infarction (MI) leads to a loss of cardiac function which, following adverse ventricular remodeling (AVR), can ultimately result in heart failure. Tissue-engineered contractile patches placed over the infarct offer potential for restoring cardiac function and reducing AVR. In this computational study, we investigate how improvement of pump function depends on the orientation of the cardiac patch and the fibers therein relative to the left ventricle (LV). Additionally, we examine how model outcome depends on the choice of material properties for healthy and infarct tissue. In a finite element model of LV mechanics, an infarction was induced by eliminating active stress generation and increasing passive tissue stiffness in a region comprising 15% of the LV wall volume. The cardiac patch was modeled as a rectangular piece of healthy myocardium with a volume of 25% of the infarcted tissue. The orientation of the patch was varied from 0 to <span>\\(150^ \\circ \\)</span> relative to the circumferential plane. The infarct reduced stroke work by 34% compared to the healthy heart. Optimal patch support was achieved when the patch was oriented parallel to the subepicardial fiber direction, restoring 9% of lost functionality. Typically, about one-third of the total recovery was attributed to the patch, while the remainder resulted from restored functionality in native myocardium adjacent to the infarct. The patch contributes to cardiac function through two mechanisms. A contribution of tissue in the patch and an increased contribution of native tissue, due to favorable changes in mechanical boundary conditions.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"1963 - 1976"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-024-01877-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-024-01877-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myocardial infarction (MI) leads to a loss of cardiac function which, following adverse ventricular remodeling (AVR), can ultimately result in heart failure. Tissue-engineered contractile patches placed over the infarct offer potential for restoring cardiac function and reducing AVR. In this computational study, we investigate how improvement of pump function depends on the orientation of the cardiac patch and the fibers therein relative to the left ventricle (LV). Additionally, we examine how model outcome depends on the choice of material properties for healthy and infarct tissue. In a finite element model of LV mechanics, an infarction was induced by eliminating active stress generation and increasing passive tissue stiffness in a region comprising 15% of the LV wall volume. The cardiac patch was modeled as a rectangular piece of healthy myocardium with a volume of 25% of the infarcted tissue. The orientation of the patch was varied from 0 to \(150^ \circ \) relative to the circumferential plane. The infarct reduced stroke work by 34% compared to the healthy heart. Optimal patch support was achieved when the patch was oriented parallel to the subepicardial fiber direction, restoring 9% of lost functionality. Typically, about one-third of the total recovery was attributed to the patch, while the remainder resulted from restored functionality in native myocardium adjacent to the infarct. The patch contributes to cardiac function through two mechanisms. A contribution of tissue in the patch and an increased contribution of native tissue, due to favorable changes in mechanical boundary conditions.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.