Injectable Nanorobot-Hydrogel Superstructure for Hemostasis and Anticancer Therapy of Spinal Metastasis.

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2024-08-01 DOI:10.1007/s40820-024-01469-3
Qing Chen, Miao Yan, Annan Hu, Bing Liang, Hongwei Lu, Lei Zhou, Yiqun Ma, Chao Jia, Dihan Su, Biao Kong, Wei Hong, Libo Jiang, Jian Dong
{"title":"Injectable Nanorobot-Hydrogel Superstructure for Hemostasis and Anticancer Therapy of Spinal Metastasis.","authors":"Qing Chen, Miao Yan, Annan Hu, Bing Liang, Hongwei Lu, Lei Zhou, Yiqun Ma, Chao Jia, Dihan Su, Biao Kong, Wei Hong, Libo Jiang, Jian Dong","doi":"10.1007/s40820-024-01469-3","DOIUrl":null,"url":null,"abstract":"<p><p>Surgery remains the standard treatment for spinal metastasis. However, uncontrolled intraoperative bleeding poses a significant challenge for adequate surgical resection and compromises surgical outcomes. In this study, we develop a thrombin (Thr)-loaded nanorobot-hydrogel hybrid superstructure by incorporating nanorobots into regenerated silk fibroin nanofibril hydrogels. This superstructure with superior thixotropic properties is injected percutaneously and dispersed into the spinal metastasis of hepatocellular carcinoma (HCC) with easy bleeding characteristics, before spinal surgery in a mouse model. Under near-infrared irradiation, the self-motile nanorobots penetrate into the deep spinal tumor, releasing Thr in a controlled manner. Thr-induced thrombosis effectively blocks the tumor vasculature and reduces bleeding, inhibiting tumor growth and postoperative recurrence with Au nanorod-mediated photothermal therapy. Our minimally invasive treatment platform provides a novel preoperative therapeutic strategy for HCC spinal metastasis effectively controlling intraoperative bleeding and tumor growth, with potentially reduced surgical complications and enhanced operative outcomes.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291792/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-024-01469-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Surgery remains the standard treatment for spinal metastasis. However, uncontrolled intraoperative bleeding poses a significant challenge for adequate surgical resection and compromises surgical outcomes. In this study, we develop a thrombin (Thr)-loaded nanorobot-hydrogel hybrid superstructure by incorporating nanorobots into regenerated silk fibroin nanofibril hydrogels. This superstructure with superior thixotropic properties is injected percutaneously and dispersed into the spinal metastasis of hepatocellular carcinoma (HCC) with easy bleeding characteristics, before spinal surgery in a mouse model. Under near-infrared irradiation, the self-motile nanorobots penetrate into the deep spinal tumor, releasing Thr in a controlled manner. Thr-induced thrombosis effectively blocks the tumor vasculature and reduces bleeding, inhibiting tumor growth and postoperative recurrence with Au nanorod-mediated photothermal therapy. Our minimally invasive treatment platform provides a novel preoperative therapeutic strategy for HCC spinal metastasis effectively controlling intraoperative bleeding and tumor growth, with potentially reduced surgical complications and enhanced operative outcomes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于脊柱转移瘤止血和抗癌治疗的可注射纳米机器人-水凝胶超结构。
手术仍然是治疗脊柱转移瘤的标准方法。然而,无法控制的术中出血对充分的手术切除构成了巨大挑战,并影响手术效果。在这项研究中,我们将纳米机器人融入再生丝纤维蛋白纳米纤维水凝胶中,开发出一种凝血酶(Thr)负载纳米机器人-水凝胶混合上层结构。在小鼠脊柱手术前,经皮注射这种具有卓越触变性能的超结构,并将其分散到具有易出血特性的肝细胞癌(HCC)脊柱转移灶中。在近红外照射下,自运动纳米机器人穿透脊柱深部肿瘤,以可控方式释放 Thr。Thr诱导的血栓形成可有效阻断肿瘤血管并减少出血,通过金纳米棒介导的光热疗法抑制肿瘤生长和术后复发。我们的微创治疗平台为 HCC 脊柱转移提供了一种新的术前治疗策略,可有效控制术中出血和肿瘤生长,减少手术并发症,提高手术效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
3D Printing of Periodic Porous Metamaterials for Tunable Electromagnetic Shielding Across Broad Frequencies. Correction: Impact of Transition Metal Layer Vacancy on the Structure and Performance of P2 Type Layered Sodium Cathode Material. Highly Sensitive Ammonia Gas Sensors at Room Temperature Based on the Catalytic Mechanism of N, C Coordinated Ni Single-Atom Active Center. Light-Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications. Enhancing the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Through Cascade Structure Tuning for Highly Stable Biomass Upgrading.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1