Development and In vivo Evaluation of Atomoxetine Hydrochloride ODMTs in a Nicotine-induced Attention Deficit Hyperactivity Disorder (ADHD) Model in Rats
{"title":"Development and In vivo Evaluation of Atomoxetine Hydrochloride ODMTs in a Nicotine-induced Attention Deficit Hyperactivity Disorder (ADHD) Model in Rats","authors":"Özbeyen Atalay, Emine Dilek Ozyilmaz, Deniz Önal, Bilge Pehli̇vanoğlu, Tansel Çomoğlu","doi":"10.1208/s12249-024-02889-5","DOIUrl":null,"url":null,"abstract":"<div><p>The current study aimed to evaluate the efficacy of orally administered rapid mini-tablets containing atomoxetine hydrochloride (ODMT) relative to the conventional capsule formulation of atomoxetine hydrochloride (ATO). To mask the bitter taste of ATO and render it more palatable for pediatric administration in individuals with Attention Deficit Hyperactivity Disorder (ADHD), an inclusion complex of ATO with β-cyclodextrin (β-CD) was synthesized. The ODMT and conventional capsule ATO formulations were administered orally to a cohort of ADHD rat pups born to nicotine-exposed dams, facilitating an <i>in vivo</i> efficacy assessment. Behavioral assays, including the open field test, novel object recognition test, and Barnes maze test, were conducted pre- and post-administration of the therapeutics. The outcomes suggested that the ODMT formulation, incorporating ATO-β-CD inclusion complexes, shows promise as a viable alternative to the capsule form of ATO. Conclusively, the preparation of the ATO-β-CD complexes and ODMTs leveraged a factorial experimental design, with the animal model being subjected to nicotine-induced hyperactivity to provide a unique evaluative framework for the ODMT formulation under development.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-02889-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02889-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The current study aimed to evaluate the efficacy of orally administered rapid mini-tablets containing atomoxetine hydrochloride (ODMT) relative to the conventional capsule formulation of atomoxetine hydrochloride (ATO). To mask the bitter taste of ATO and render it more palatable for pediatric administration in individuals with Attention Deficit Hyperactivity Disorder (ADHD), an inclusion complex of ATO with β-cyclodextrin (β-CD) was synthesized. The ODMT and conventional capsule ATO formulations were administered orally to a cohort of ADHD rat pups born to nicotine-exposed dams, facilitating an in vivo efficacy assessment. Behavioral assays, including the open field test, novel object recognition test, and Barnes maze test, were conducted pre- and post-administration of the therapeutics. The outcomes suggested that the ODMT formulation, incorporating ATO-β-CD inclusion complexes, shows promise as a viable alternative to the capsule form of ATO. Conclusively, the preparation of the ATO-β-CD complexes and ODMTs leveraged a factorial experimental design, with the animal model being subjected to nicotine-induced hyperactivity to provide a unique evaluative framework for the ODMT formulation under development.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.