Understanding machine learning applications in dementia research and clinical practice: a review for biomedical scientists and clinicians.

IF 7.9 1区 医学 Q1 CLINICAL NEUROLOGY Alzheimer's Research & Therapy Pub Date : 2024-08-01 DOI:10.1186/s13195-024-01540-6
Yihan Wang, Shu Liu, Alanna G Spiteri, Andrew Liem Hieu Huynh, Chenyin Chu, Colin L Masters, Benjamin Goudey, Yijun Pan, Liang Jin
{"title":"Understanding machine learning applications in dementia research and clinical practice: a review for biomedical scientists and clinicians.","authors":"Yihan Wang, Shu Liu, Alanna G Spiteri, Andrew Liem Hieu Huynh, Chenyin Chu, Colin L Masters, Benjamin Goudey, Yijun Pan, Liang Jin","doi":"10.1186/s13195-024-01540-6","DOIUrl":null,"url":null,"abstract":"<p><p>Several (inter)national longitudinal dementia observational datasets encompassing demographic information, neuroimaging, biomarkers, neuropsychological evaluations, and muti-omics data, have ushered in a new era of potential for integrating machine learning (ML) into dementia research and clinical practice. ML, with its proficiency in handling multi-modal and high-dimensional data, has emerged as an innovative technique to facilitate early diagnosis, differential diagnosis, and to predict onset and progression of mild cognitive impairment and dementia. In this review, we evaluate current and potential applications of ML, including its history in dementia research, how it compares to traditional statistics, the types of datasets it uses and the general workflow. Moreover, we identify the technical barriers and challenges of ML implementations in clinical practice. Overall, this review provides a comprehensive understanding of ML with non-technical explanations for broader accessibility to biomedical scientists and clinicians.</p>","PeriodicalId":7516,"journal":{"name":"Alzheimer's Research & Therapy","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13195-024-01540-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Several (inter)national longitudinal dementia observational datasets encompassing demographic information, neuroimaging, biomarkers, neuropsychological evaluations, and muti-omics data, have ushered in a new era of potential for integrating machine learning (ML) into dementia research and clinical practice. ML, with its proficiency in handling multi-modal and high-dimensional data, has emerged as an innovative technique to facilitate early diagnosis, differential diagnosis, and to predict onset and progression of mild cognitive impairment and dementia. In this review, we evaluate current and potential applications of ML, including its history in dementia research, how it compares to traditional statistics, the types of datasets it uses and the general workflow. Moreover, we identify the technical barriers and challenges of ML implementations in clinical practice. Overall, this review provides a comprehensive understanding of ML with non-technical explanations for broader accessibility to biomedical scientists and clinicians.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解痴呆症研究和临床实践中的机器学习应用:面向生物医学家和临床医师的综述。
一些(国家间)纵向痴呆症观察数据集涵盖了人口统计学信息、神经影像学、生物标记物、神经心理学评估和突变组学数据,为将机器学习(ML)融入痴呆症研究和临床实践开创了一个新时代。机器学习能熟练处理多模态和高维数据,已成为促进早期诊断、鉴别诊断以及预测轻度认知障碍和痴呆症发病和进展的创新技术。在这篇综述中,我们将评估 ML 的当前和潜在应用,包括其在痴呆症研究中的历史、与传统统计学的比较、使用的数据集类型以及一般工作流程。此外,我们还指出了在临床实践中实施 ML 的技术障碍和挑战。总之,这篇综述提供了对 ML 的全面了解,并提供了非技术性的解释,使生物医学科学家和临床医生更容易理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Alzheimer's Research & Therapy
Alzheimer's Research & Therapy 医学-神经病学
CiteScore
13.10
自引率
3.30%
发文量
172
审稿时长
>12 weeks
期刊介绍: Alzheimer's Research & Therapy is an international peer-reviewed journal that focuses on translational research into Alzheimer's disease and other neurodegenerative diseases. It publishes open-access basic research, clinical trials, drug discovery and development studies, and epidemiologic studies. The journal also includes reviews, viewpoints, commentaries, debates, and reports. All articles published in Alzheimer's Research & Therapy are included in several reputable databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, MEDLINE, PubMed, PubMed Central, Science Citation Index Expanded (Web of Science) and Scopus.
期刊最新文献
Facial aging, cognitive impairment, and dementia risk. Exploring easily accessible neurophysiological biomarkers for predicting Alzheimer's disease progression: a systematic review. Sex-specific risk factors and clinical dementia outcomes for white matter hyperintensities in a large South Korean cohort. Perivascular space enlargement accelerates in ageing and Alzheimer's disease pathology: evidence from a three-year longitudinal multicentre study. Assessing the metabolism of the olfactory circuit by use of 18F-FDG PET-CT imaging in patients suspected of suffering from Alzheimer's disease or frontotemporal dementia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1