{"title":"The gynostemium: More than the sum of its parts with emerging floral complexities","authors":"Natalia Pabón-Mora , Favio González","doi":"10.1016/j.pbi.2024.102609","DOIUrl":null,"url":null,"abstract":"<div><p>Partial or complete floral organ fusion, which occurs in most angiosperm lineages, promotes integration of whorls leading to specialization and complexity. One of the most remarkable floral organ fusions occurs in the gynostemium, a highly specialized structure formed by the congenital fusion of the androecium and the upper portion of the gynoecium. Here we review the gynostemia evolution across flowering plants, the morphological requirements for the synorganization of the two fertile floral whorls, and the molecular basis most likely responsible for such intimate fusion process.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102609"},"PeriodicalIF":8.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624001006/pdfft?md5=8c5d4bd6bb5a04cc41b51b915ba29cce&pid=1-s2.0-S1369526624001006-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Partial or complete floral organ fusion, which occurs in most angiosperm lineages, promotes integration of whorls leading to specialization and complexity. One of the most remarkable floral organ fusions occurs in the gynostemium, a highly specialized structure formed by the congenital fusion of the androecium and the upper portion of the gynoecium. Here we review the gynostemia evolution across flowering plants, the morphological requirements for the synorganization of the two fertile floral whorls, and the molecular basis most likely responsible for such intimate fusion process.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.