A thorough investigation of the antiferromagnetic resonance.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-08-13 DOI:10.1088/1361-648X/ad69f0
A R Moura
{"title":"A thorough investigation of the antiferromagnetic resonance.","authors":"A R Moura","doi":"10.1088/1361-648X/ad69f0","DOIUrl":null,"url":null,"abstract":"<p><p>Antiferromagnetic (AF) compounds possess distinct characteristics that render them promising candidates for advancing the application of spin degree of freedom in computational devices. For instance, AF materials exhibit minimal susceptibility to external magnetic fields while operating at frequencies significantly higher than their ferromagnetic counterparts. However, despite their potential, there remains a dearth of understanding, particularly concerning certain aspects of AF spintronics. In particular, the properties of coherent states in AF materials have received insufficient investigation, with many features extrapolated directly from the ferromagnetic scenario. Addressing this gap, this study offers a comprehensive examination of AF coherent states, shedding new light on both AF and Spin-Flop phases. Employing the Holstein-Primakoff formalism, we conduct an in-depth analysis of resonating-driven coherent phases. Subsequently, we apply this formalism to characterize antiferromagnetic resonance, a pivotal phenomenon in spin-pumping experiments, and extract crucial insights therefrom.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad69f0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Antiferromagnetic (AF) compounds possess distinct characteristics that render them promising candidates for advancing the application of spin degree of freedom in computational devices. For instance, AF materials exhibit minimal susceptibility to external magnetic fields while operating at frequencies significantly higher than their ferromagnetic counterparts. However, despite their potential, there remains a dearth of understanding, particularly concerning certain aspects of AF spintronics. In particular, the properties of coherent states in AF materials have received insufficient investigation, with many features extrapolated directly from the ferromagnetic scenario. Addressing this gap, this study offers a comprehensive examination of AF coherent states, shedding new light on both AF and Spin-Flop phases. Employing the Holstein-Primakoff formalism, we conduct an in-depth analysis of resonating-driven coherent phases. Subsequently, we apply this formalism to characterize antiferromagnetic resonance, a pivotal phenomenon in spin-pumping experiments, and extract crucial insights therefrom.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对反铁磁共振的深入研究
反铁磁(AF)化合物具有与众不同的特性,使其成为推动自旋自由度在计算设备中应用的理想候选材料。例如,反铁磁材料对外部磁场的敏感性极低,而工作频率却远高于铁磁材料。然而,尽管自旋自由度材料潜力巨大,但人们对其仍然缺乏了解,尤其是在自旋自由度自旋电子学的某些方面。特别是,人们对自动对频材料中相干态的特性研究不够,许多特性都是直接从铁磁情况中推断出来的。针对这一空白,本研究全面考察了 AF 相干态,为 AF 和 Spin-Flop 相带来了新的启示。我们采用霍尔施泰因-普里马科夫形式主义,对共振驱动的相干相进行了深入分析。随后,我们运用这一形式主义来描述自旋泵浦实验中的一个关键现象--反铁磁共振,并从中萃取出重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Bruggeman homogenization of a particulate composite material comprising truncated spheres and spheroids. Chirality reversal quantum phase transition in flat-band topological insulators. Critical factors influencing electron and phonon thermal conductivity in metallic materials using first-principles calculations. Valley manipulation by external fields in two-dimensional materials and their hybrid systems. Phase transition and metallization of semiconductor GeSe at high pressure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1