Ferroelectricity-controlled magnetic ordering and spin photocurrent in NiCl2/GeS multiferroic heterostructures.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-08-08 DOI:10.1088/1361-648X/ad69f3
Anu Arora, Pradip Nandi, Abir De Sarkar
{"title":"Ferroelectricity-controlled magnetic ordering and spin photocurrent in NiCl<sub>2</sub>/GeS multiferroic heterostructures.","authors":"Anu Arora, Pradip Nandi, Abir De Sarkar","doi":"10.1088/1361-648X/ad69f3","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling magnetism solely through electrical means is indeed a significant challenge, yet holds great potential for advancing information technology. Herein, our investigation presents a promising avenue for electrically manipulating magnetic ordering within 2D van der Waals NiCl<sub>2</sub>/GeS heterostructures. These heterostructures, characterized by their unique magnetic-ferroelectric (FE) layer stacking, demonstrate spin-constrained photoelectric memory, enabling low-power electrical writing and non-destructive optical reading. The two orientations of the polarization in the GeS FE layer bring about changes in the ground state configuration, transitioning from ferromagnetic (FM) to antiferromagnetic (AFM) orderings within the NiCl<sub>2</sub>magnetic layer. Correspondingly, the light-induced charge transfer prompts either spin-polarized or unpolarized currents from the FM or AFM states, serving as distinct '1' or '0' states, and facilitating applications in logic processing and memory devices. This transition stems from the interplay of interfacial charge transfer mechanisms and the influence of the effective electric field (<i>E</i><sub>eff</sub>), bringing a non-volatile electric enhancement in the magnetic anisotropy energy within the NiCl<sub>2</sub>/GeS heterostructure. Overall, our study highlights the NiCl<sub>2</sub>/GeS heterostructure as an optimal candidate for realizing spin-dependent photoelectric memory, offering unprecedented opportunities for seamlessly integrating memory processing capabilities into a single device through the utilization of layered multiferroic heterostructures.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad69f3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling magnetism solely through electrical means is indeed a significant challenge, yet holds great potential for advancing information technology. Herein, our investigation presents a promising avenue for electrically manipulating magnetic ordering within 2D van der Waals NiCl2/GeS heterostructures. These heterostructures, characterized by their unique magnetic-ferroelectric (FE) layer stacking, demonstrate spin-constrained photoelectric memory, enabling low-power electrical writing and non-destructive optical reading. The two orientations of the polarization in the GeS FE layer bring about changes in the ground state configuration, transitioning from ferromagnetic (FM) to antiferromagnetic (AFM) orderings within the NiCl2magnetic layer. Correspondingly, the light-induced charge transfer prompts either spin-polarized or unpolarized currents from the FM or AFM states, serving as distinct '1' or '0' states, and facilitating applications in logic processing and memory devices. This transition stems from the interplay of interfacial charge transfer mechanisms and the influence of the effective electric field (Eeff), bringing a non-volatile electric enhancement in the magnetic anisotropy energy within the NiCl2/GeS heterostructure. Overall, our study highlights the NiCl2/GeS heterostructure as an optimal candidate for realizing spin-dependent photoelectric memory, offering unprecedented opportunities for seamlessly integrating memory processing capabilities into a single device through the utilization of layered multiferroic heterostructures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NiCl2/GeS 多铁素体异质结构中的铁电控制磁有序和自旋光电流。
仅通过电学手段来控制磁性确实是一项重大挑战,但却蕴含着推动信息技术发展的巨大潜力。在此,我们的研究为在二维范德华NiCl2/GeS异质结构中电气操纵磁有序提供了一个前景广阔的途径。这些异质结构以其独特的磁-铁电层堆叠为特征,展示了自旋约束光电记忆,实现了低功耗电写入和非破坏性光学读取。GeS 铁电层中极化的两个方向导致基态构型发生变化,在 NiCl2 磁层中从铁磁(FM)有序过渡到反铁磁(AFM)有序。相应地,光诱导的电荷转移促使自旋极化或非极化电流从铁磁态或反铁磁态流出,形成不同的 "1 "态或 "0 "态,促进了逻辑处理和存储设备的应用。这种转变源于界面电荷转移机制的相互作用和有效电场(Eeff)的影响,从而在 NiCl2/GeS 异质结构中带来了磁各向异性能(MAE)的非挥发性电增强。总之,我们的研究突出表明,NiCl2/GeS异质结构是实现自旋依赖性光电存储器的最佳候选结构,通过利用层状多铁素体异质结构,为将存储器处理功能无缝集成到单一器件中提供了前所未有的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Bruggeman homogenization of a particulate composite material comprising truncated spheres and spheroids. Chirality reversal quantum phase transition in flat-band topological insulators. Critical factors influencing electron and phonon thermal conductivity in metallic materials using first-principles calculations. Valley manipulation by external fields in two-dimensional materials and their hybrid systems. Phase transition and metallization of semiconductor GeSe at high pressure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1