Inhibition of insulin degrading enzyme suppresses osteoclast hyperactivity via enhancing Nrf2-dependent antioxidant response in glucocorticoid-induced osteonecrosis of the femoral head.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Medicine Pub Date : 2024-07-31 DOI:10.1186/s10020-024-00880-1
Tao Yuan, Haojue Wang, Yi Wang, Shankun Dong, Jianxun Ge, Ziqing Li, Shui Sun
{"title":"Inhibition of insulin degrading enzyme suppresses osteoclast hyperactivity via enhancing Nrf2-dependent antioxidant response in glucocorticoid-induced osteonecrosis of the femoral head.","authors":"Tao Yuan, Haojue Wang, Yi Wang, Shankun Dong, Jianxun Ge, Ziqing Li, Shui Sun","doi":"10.1186/s10020-024-00880-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteoclast hyperactivation due to the pathological overproduction of reactive oxygen species (ROS) stimulated by glucocorticoids (GCs) is one of the key drivers behind glucocorticoid-induced osteonecrosis of the femoral head (GIONFH). The insulin degrading enzyme (IDE), a conserved Zn<sup>2+</sup> metallo-endopeptidase, facilitates the DNA binding of glucocorticoid receptor and plays a substantial role in steroid hormone-related signaling pathways. However, the potential role of IDE in the pathogenesis of GIONFH is yet undefined.</p><p><strong>Methods: </strong>In this study, we employed network pharmacology and bioinformatics analysis to explore the impact of IDE inhibition on GIONFH with 6bK as an inhibitory agent. Further evidence was collected through in vitro osteoclastogenesis experiments and in vivo evaluations involving methylprednisolone (MPS)-induced GIONFH mouse model.</p><p><strong>Results: </strong>Enrichment analysis indicated a potential role of 6bK in redox regulation amid GIONFH development. In vitro findings revealed that 6bK could attenuate GCs-stimulated overactivation of osteoclast differentiation by interfering with the transcription and expression of key osteoclastic genes (Traf6, Nfatc1, and Ctsk). The use of an H<sub>2</sub>DCFDA probe and subsequent WB assays introduced the inhibitory effects of 6bK on osteoclastogenesis, linked with the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2)-mediated antioxidant system. Furthermore, Micro-CT scans validated that 6bK could alleviate GIONFH in MPS-induced mouse models.</p><p><strong>Conclusions: </strong>Our findings suggest that 6bK suppresses osteoclast hyperactivity in GCs-rich environment. This is achieved by reducing the accumulation of intracellular ROS via promoting the Nrf2-mediated antioxidant system, thus implying that IDE could be a promising therapeutic target for GIONFH.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292917/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00880-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Osteoclast hyperactivation due to the pathological overproduction of reactive oxygen species (ROS) stimulated by glucocorticoids (GCs) is one of the key drivers behind glucocorticoid-induced osteonecrosis of the femoral head (GIONFH). The insulin degrading enzyme (IDE), a conserved Zn2+ metallo-endopeptidase, facilitates the DNA binding of glucocorticoid receptor and plays a substantial role in steroid hormone-related signaling pathways. However, the potential role of IDE in the pathogenesis of GIONFH is yet undefined.

Methods: In this study, we employed network pharmacology and bioinformatics analysis to explore the impact of IDE inhibition on GIONFH with 6bK as an inhibitory agent. Further evidence was collected through in vitro osteoclastogenesis experiments and in vivo evaluations involving methylprednisolone (MPS)-induced GIONFH mouse model.

Results: Enrichment analysis indicated a potential role of 6bK in redox regulation amid GIONFH development. In vitro findings revealed that 6bK could attenuate GCs-stimulated overactivation of osteoclast differentiation by interfering with the transcription and expression of key osteoclastic genes (Traf6, Nfatc1, and Ctsk). The use of an H2DCFDA probe and subsequent WB assays introduced the inhibitory effects of 6bK on osteoclastogenesis, linked with the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2)-mediated antioxidant system. Furthermore, Micro-CT scans validated that 6bK could alleviate GIONFH in MPS-induced mouse models.

Conclusions: Our findings suggest that 6bK suppresses osteoclast hyperactivity in GCs-rich environment. This is achieved by reducing the accumulation of intracellular ROS via promoting the Nrf2-mediated antioxidant system, thus implying that IDE could be a promising therapeutic target for GIONFH.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在糖皮质激素诱导的股骨头坏死中,抑制胰岛素降解酶可通过增强 Nrf2 依赖性抗氧化反应抑制破骨细胞的亢进。
背景:在糖皮质激素(GCs)的刺激下,活性氧(ROS)的病理性过量产生导致破骨细胞过度活化,是糖皮质激素诱导的股骨头坏死(GIONFH)的主要驱动因素之一。胰岛素降解酶(IDE)是一种保守的 Zn2+ 金属内肽酶,可促进糖皮质激素受体的 DNA 结合,并在类固醇激素相关的信号通路中发挥重要作用。然而,IDE在GIONFH发病机制中的潜在作用尚未明确:本研究采用网络药理学和生物信息学分析方法,以 6bK 为抑制剂,探讨 IDE 抑制对 GIONFH 的影响。通过体外破骨细胞生成实验和甲基强的松龙(MPS)诱导的 GIONFH 小鼠模型的体内评估收集了进一步的证据:结果:富集分析表明,6bK在GIONFH发展过程中的氧化还原调节中具有潜在作用。体外研究结果表明,6bK可通过干扰关键破骨细胞基因(Traf6、Nfatc1和Ctsk)的转录和表达,减轻GCs刺激下破骨细胞分化的过度激活。使用 H2DCFDA 探针和随后的 WB 检测发现,6bK 对破骨细胞生成有抑制作用,这与激活核因子红细胞衍生 2-like 2(Nrf2)介导的抗氧化系统有关。此外,显微 CT 扫描验证了 6bK 可减轻 MPS 诱导的小鼠模型中的 GIONFH:我们的研究结果表明,在富含 GCs 的环境中,6bK 可抑制破骨细胞的过度活跃。结论:我们的研究结果表明,在富含 GCs 的环境中,6bK 可抑制破骨细胞的亢进,这是通过促进 Nrf2 介导的抗氧化系统来减少细胞内 ROS 的积累实现的,从而意味着 IDE 可能是治疗 GIONFH 的一个有前景的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
期刊最新文献
Ferrostatin-1 ameliorates Cis-dichlorodiammineplatinum(II)-induced ovarian toxicity by inhibiting ferroptosis Branched-chain amino acids supplementation induces insulin resistance and pro-inflammatory macrophage polarization via INFGR1/JAK1/STAT1 signal pathway Capsaicin mitigates ventilator-induced lung injury by suppressing ferroptosis and maintaining mitochondrial redox homeostasis through SIRT3-dependent mechanisms SIRT1-mediated deacetylation of FOXO3 enhances mitophagy and drives hormone resistance in endometrial cancer SYK promotes the formation of neutrophil extracellular traps by inducing PKM2 nuclear translocation and promoting STAT3 phosphorylation to exacerbate hepatic ischemia-reperfusion injury and tumor recurrence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1