Optimization of degradation of potassium ethyl xanthate using Fe2O3/TiO2/Flyash nanophotocatalyst using Taguchi statistical approach

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL Minerals Engineering Pub Date : 2024-07-31 DOI:10.1016/j.mineng.2024.108865
{"title":"Optimization of degradation of potassium ethyl xanthate using Fe2O3/TiO2/Flyash nanophotocatalyst using Taguchi statistical approach","authors":"","doi":"10.1016/j.mineng.2024.108865","DOIUrl":null,"url":null,"abstract":"<div><p>Xanthate from mineral processing wastewater is a major threat to the ecosystem. Photocatalysis is emerging as the most effective process with the invention of new nanophotocatalytic materials. The present research focuses on developing the ternary nanocomposite Fe<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub>/Flyash by a facile hydrothermal method combined with a water bath precipitation method for the efficient degradation of potassium ethyl xanthate (KEX). Taguchi’s experimentation (L<sub>16</sub>) orthogonal array is used for the optimization of process parameters to get maximum KEX degradation efficiency. The optimized parameters are found to be calcination temperature 400 <sup>O</sup>C, photocatalyst dosage 0.7 g/L, pH 5, pollutant concentration 10 mg/L, and light intensity 100 W. The percentage contribution of each parameter is obtained through the ANOVA statistical approach as calcination temperature &gt; pH&gt;pollutant concentration &gt; photocatalyst dosage &gt; light intensity. The adsorption mechanism follows the Freundlich isotherm and fits well with pseudo-first-order and second-order kinetics. Material characterization is also done to analyze the crystal structure and morphology of the newly developed nanocomposite to gain a better understanding of the mechanism. This study indicates that the newly developed nanocomposite photocatalyst can effectively degrade potassium ethyl xanthate under light irradiation for 60 min.</p></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524002942","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Xanthate from mineral processing wastewater is a major threat to the ecosystem. Photocatalysis is emerging as the most effective process with the invention of new nanophotocatalytic materials. The present research focuses on developing the ternary nanocomposite Fe2O3/TiO2/Flyash by a facile hydrothermal method combined with a water bath precipitation method for the efficient degradation of potassium ethyl xanthate (KEX). Taguchi’s experimentation (L16) orthogonal array is used for the optimization of process parameters to get maximum KEX degradation efficiency. The optimized parameters are found to be calcination temperature 400 OC, photocatalyst dosage 0.7 g/L, pH 5, pollutant concentration 10 mg/L, and light intensity 100 W. The percentage contribution of each parameter is obtained through the ANOVA statistical approach as calcination temperature > pH>pollutant concentration > photocatalyst dosage > light intensity. The adsorption mechanism follows the Freundlich isotherm and fits well with pseudo-first-order and second-order kinetics. Material characterization is also done to analyze the crystal structure and morphology of the newly developed nanocomposite to gain a better understanding of the mechanism. This study indicates that the newly developed nanocomposite photocatalyst can effectively degrade potassium ethyl xanthate under light irradiation for 60 min.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用田口统计法优化使用 Fe2O3/TiO2/Flyash 纳米光催化剂降解黄原酸乙酯钾的过程
选矿废水中的黄原酸盐是对生态系统的一大威胁。随着新型纳米光催化材料的发明,光催化正在成为最有效的工艺。本研究的重点是通过一种简便的水热法结合水浴沉淀法,开发出FeO/TiO/Flyash三元纳米复合材料,用于高效降解黄原酸乙酯钾(KEX)。田口试验(L)正交阵列用于优化工艺参数,以获得最大的 KEX 降解效率。优化参数为煅烧温度 400 C、光催化剂用量 0.7 g/L、pH 值 5、污染物浓度 10 mg/L、光照强度 100 W。通过方差分析统计方法得出各参数的贡献百分比为煅烧温度 > pH 值 > 污染物浓度 > 光催化剂用量 > 光照强度。吸附机理遵循 Freundlich 等温线,与伪一阶和二阶动力学非常吻合。此外,还进行了材料表征,分析了新开发的纳米复合材料的晶体结构和形态,以便更好地理解其机理。该研究表明,新开发的纳米复合光催化剂在光照下 60 分钟可有效降解黄原酸乙酯钾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
期刊最新文献
Pentetic acid/ammonia cooperatively stabilizes Cu(II) as an efficient oxidant for green thiosulfate leaching of gold Kinetic study of dry magnetic separation based on Gauss-Maxwell magnetic stress tensor: A 3D finite element method (FEM) Assessment of different energy-based breakage distribution functions in population balance model of an industrial scale continuously operated wet stirred media mill Causes of failures in vibrating screens: A literature review Magnesiothermic reduction of beryllium fluoride: Reaction mechanism and kinetic study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1