Self-Recoverable Symmetric Protonic Ceramic Fuel Cell with Smart Reversible Exsolution/Dissolution Electrode

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-08-01 DOI:10.1002/adfm.202404846
Yuhao Wang, Zheng Wang, Kaichuang Yang, Jiapeng Liu, Yufei Song, Jingwei Li, Zhiwei Hu, Matthew J. Robson, Zhiqi Zhang, Yunfeng Tian, Shenjun Xu, Ying Lu, Ho Mei Law, Feng Liu, Qing Chen, Zhibin Yang, Francesco Ciucci
{"title":"Self-Recoverable Symmetric Protonic Ceramic Fuel Cell with Smart Reversible Exsolution/Dissolution Electrode","authors":"Yuhao Wang, Zheng Wang, Kaichuang Yang, Jiapeng Liu, Yufei Song, Jingwei Li, Zhiwei Hu, Matthew J. Robson, Zhiqi Zhang, Yunfeng Tian, Shenjun Xu, Ying Lu, Ho Mei Law, Feng Liu, Qing Chen, Zhibin Yang, Francesco Ciucci","doi":"10.1002/adfm.202404846","DOIUrl":null,"url":null,"abstract":"This study unveils a novel concept of symmetric protonic ceramic fuel cells (symm-PCFCs) with the introduction of a self-recoverable electrode design, employing the innovative material BaCo<sub>0.4</sub>Fe<sub>0.4</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> (BCFZY). This research marks a significant milestone as it demonstrates the bi-functional electrocatalytic activity of BCFZY for the first time. Utilizing density functional theory simulations, the molecular orbital interactions and defect chemistry of BCFZY are explored, uncovering its unique capability for the reversible exsolution and dissolution of Co-Fe nanoparticles under redox conditions. This feature is pivotal in promoting both hydrogen oxidation and oxygen reduction reactions. Leveraging this insight, a cell is fabricated exhibiting high electrocatalytic activity and fuel flexibility as evidenced by the peak power densities of ≈350, 287, and 221 mW cm<sup>−2</sup> (at 600 °C) with hydrogen, methanol, and methane as fuels, respectively. Experiments also show that the reversible exsolution/dissolution mitigates performance degradation, enabling prolonged operational life through self-recovery. This approach paves the way for novel, advanced, durable, and commercially viable symm-PCFCs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202404846","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study unveils a novel concept of symmetric protonic ceramic fuel cells (symm-PCFCs) with the introduction of a self-recoverable electrode design, employing the innovative material BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY). This research marks a significant milestone as it demonstrates the bi-functional electrocatalytic activity of BCFZY for the first time. Utilizing density functional theory simulations, the molecular orbital interactions and defect chemistry of BCFZY are explored, uncovering its unique capability for the reversible exsolution and dissolution of Co-Fe nanoparticles under redox conditions. This feature is pivotal in promoting both hydrogen oxidation and oxygen reduction reactions. Leveraging this insight, a cell is fabricated exhibiting high electrocatalytic activity and fuel flexibility as evidenced by the peak power densities of ≈350, 287, and 221 mW cm−2 (at 600 °C) with hydrogen, methanol, and methane as fuels, respectively. Experiments also show that the reversible exsolution/dissolution mitigates performance degradation, enabling prolonged operational life through self-recovery. This approach paves the way for novel, advanced, durable, and commercially viable symm-PCFCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有智能可逆溶解/溶解电极的自恢复对称质子陶瓷燃料电池
这项研究采用创新材料 BaCo0.4Fe0.4Zr0.1Y0.1O3-δ(BCFZY),引入了可自我恢复的电极设计,揭示了对称质子陶瓷燃料电池(symm-PCFCs)的新概念。这项研究首次证明了 BCFZY 的双功能电催化活性,具有重要的里程碑意义。该研究利用密度泛函理论模拟,探索了 BCFZY 的分子轨道相互作用和缺陷化学性质,揭示了其在氧化还原条件下可逆地溶解 Co-Fe 纳米粒子的独特能力。这一特性在促进氢氧化和氧还原反应方面起着关键作用。利用这一洞察力,我们制造出了一种具有高电催化活性和燃料灵活性的电池,以氢、甲醇和甲烷为燃料,峰值功率密度分别为 ≈350、287 和 221 mW cm-2(600 °C 时)。实验还表明,可逆的外溶解/溶解缓解了性能退化,通过自我恢复延长了运行寿命。这种方法为开发新型、先进、耐用和商业上可行的对称全氟化碳铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Achieving Eu2+ Luminescence at Trivalent Lattice Site in Rb3Y(PO4)2:Eu toward Multicolor Emissions by Carbon and Hydrogen Coreduction Tailoring Nanocrystalline/Amorphous Interfaces to Enhance Oxygen Evolution Reaction Performance for FeNi-Based Alloy Fibers Laser Patterning for 2D Lateral and Vertical VS2/MoS2 Metal/Semiconducting Heterostructures Construction of Through-Space Charge-Transfer Nanoparticles for Facilely Realizing High-Performance NIR-II Cancer Phototheranostics A Supercapacitor Driven by MXene Nanofluid Gel Electrolyte Induced the Synergistic High Ionic Migration Rate and Excellent Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1