Maximum-entropy-based metrics for quantifying critical dynamics in spiking neuron data

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-08-01 DOI:10.1103/physreve.110.024401
Felipe Serafim, Tawan T. A. Carvalho, Mauro Copelli, Pedro V. Carelli
{"title":"Maximum-entropy-based metrics for quantifying critical dynamics in spiking neuron data","authors":"Felipe Serafim, Tawan T. A. Carvalho, Mauro Copelli, Pedro V. Carelli","doi":"10.1103/physreve.110.024401","DOIUrl":null,"url":null,"abstract":"An important working hypothesis to investigate brain activity is whether it operates in a critical regime. Recently, maximum-entropy phenomenological models have emerged as an alternative way of identifying critical behavior in neuronal data sets. In the present paper, we investigate the signatures of criticality from a firing rate-based maximum-entropy approach on data sets generated by computational models, and we compare them to experimental results. We found that the maximum entropy approach consistently identifies critical behavior around the phase transition in models and rules out criticality in models without phase transition. The maximum-entropy-model results are compatible with results for cortical data from urethane-anesthetized rats data, providing further support for criticality in the brain.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.024401","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

An important working hypothesis to investigate brain activity is whether it operates in a critical regime. Recently, maximum-entropy phenomenological models have emerged as an alternative way of identifying critical behavior in neuronal data sets. In the present paper, we investigate the signatures of criticality from a firing rate-based maximum-entropy approach on data sets generated by computational models, and we compare them to experimental results. We found that the maximum entropy approach consistently identifies critical behavior around the phase transition in models and rules out criticality in models without phase transition. The maximum-entropy-model results are compatible with results for cortical data from urethane-anesthetized rats data, providing further support for criticality in the brain.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大熵的用于量化尖峰神经元数据中临界动态的指标
研究大脑活动的一个重要工作假设是,大脑活动是否在临界状态下运行。最近,最大熵现象学模型已成为在神经元数据集中识别临界行为的另一种方法。在本文中,我们研究了基于发射率的最大熵方法在计算模型生成的数据集上的临界特征,并将其与实验结果进行了比较。我们发现,最大熵方法能一致地识别出模型中相变附近的临界行为,并排除了无相变模型的临界性。最大熵模型的结果与来自尿烷麻醉大鼠数据的皮层数据结果相一致,为大脑临界性提供了进一步的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Dispersion network-transition entropy: A metric for characterizing the complexity of nonlinear signals Fast decisions reflect biases; slow decisions do not Self-organization of anti-aligning active particles: Waving pattern formation and chaos Interaction between gas channels in water-saturated sands Testing for Markovian character of transfer of fluctuations in solar wind turbulence on kinetic scales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1