Pub Date : 2024-09-19DOI: 10.1103/physreve.110.034605
Michael S. Rusanov, Vladimir S. Zverev, Ekaterina A. Elfimova
Information about the nonlinear magnetic response of dispersions of magnetic particles is the basis for biomedical applications. In this paper, using analytical and numerical methods, the third harmonic of the dynamic susceptibility of an ensemble of moving magnetic particles in an ac magnetic field with an arbitrary amplitude is studied, taking into account interparticle interactions. A simple approximation formula is proposed to predict the third harmonic as a function of two parameters: the Langevin susceptibility , which is used to estimate the particle dipole-dipole interactions, and the Langevin parameter , which represents the ratio of the energy of the magnetic moment interacting with the magnetic field to the thermal energy. The derived approximation formula corresponds with the known single-particle theories in the limit case of a small particle's concentration and is valid for concentrated dispersions of magnetic particles (with the Langevin susceptibility up to ) in high-amplitude ac fields (with the Langevin parameter up to ).
{"title":"Third harmonic of the dynamic magnetic susceptibility of a concentrated ferrofluid: Numerical calculation and simple approximation formula","authors":"Michael S. Rusanov, Vladimir S. Zverev, Ekaterina A. Elfimova","doi":"10.1103/physreve.110.034605","DOIUrl":"https://doi.org/10.1103/physreve.110.034605","url":null,"abstract":"Information about the nonlinear magnetic response of dispersions of magnetic particles is the basis for biomedical applications. In this paper, using analytical and numerical methods, the third harmonic of the dynamic susceptibility of an ensemble of moving magnetic particles in an ac magnetic field with an arbitrary amplitude is studied, taking into account interparticle interactions. A simple approximation formula is proposed to predict the third harmonic as a function of two parameters: the Langevin susceptibility <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>χ</mi><mi>L</mi></msub></math>, which is used to estimate the particle dipole-dipole interactions, and the Langevin parameter <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ξ</mi></math>, which represents the ratio of the energy of the magnetic moment interacting with the magnetic field to the thermal energy. The derived approximation formula corresponds with the known single-particle theories in the limit case of a small particle's concentration and is valid for concentrated dispersions of magnetic particles (with the Langevin susceptibility up to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>χ</mi><mi>L</mi></msub><mo>≤</mo><mn>3</mn></mrow></math>) in high-amplitude ac fields (with the Langevin parameter up to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>ξ</mi><mo>≤</mo><mn>10</mn></mrow></math>).","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"34 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1103/physreve.110.l032401
Ian Braga, Emmanuel Pereira, Lucas Wardil
Here, we derive stochastic adaptive dynamics from the microscopic death-birth process by explicitly modeling the trait variation from offspring to parent in each reproductive event, thereby accounting for a highly polymorphic population. This generalization enables the construction of a quantitative model that can be subjected to empirical validation. Our mathematical analysis furnishes a formula for estimating the trait variation in the reproductive step by exclusively observing the current trait variation in the population. In addition, we provide a straightforward approach to obtain the fitness function associated with a particular trait by examining its actual evolutionary trajectory, which can be employed to forecast the continued evolution of the trait.
{"title":"Death-birth adaptive dynamics: modeling trait evolution","authors":"Ian Braga, Emmanuel Pereira, Lucas Wardil","doi":"10.1103/physreve.110.l032401","DOIUrl":"https://doi.org/10.1103/physreve.110.l032401","url":null,"abstract":"Here, we derive stochastic adaptive dynamics from the microscopic death-birth process by explicitly modeling the trait variation from offspring to parent in each reproductive event, thereby accounting for a highly polymorphic population. This generalization enables the construction of a quantitative model that can be subjected to empirical validation. Our mathematical analysis furnishes a formula for estimating the trait variation in the reproductive step by exclusively observing the current trait variation in the population. In addition, we provide a straightforward approach to obtain the fitness function associated with a particular trait by examining its actual evolutionary trajectory, which can be employed to forecast the continued evolution of the trait.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"191 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1103/physreve.110.035208
Erwin Walter, John P. Farmer, Martin S. Weidl, Alexander Pukhov, Frank Jenko
Charged and quasineutral beams propagating through an unmagnetized plasma are subject to numerous collisionless instabilities on the small scale of the plasma skin depth. The electrostatic two-stream instability, driven by longitudinal and transverse wakefields, dominates for dilute beams. This leads to modulation of the beam along the propagation direction and, for wide beams, transverse filamentation. A three-dimensional spatiotemporal two-stream theory for warm beams with a finite extent is developed. Unlike the cold beam limit, diffusion due to a finite emittance gives rise to a dominant wave number and a cutoff wave number above which filamentation is suppressed. Particle-in-cell simulations with quasineutral electron-positron beams in the relativistic regime give excellent agreement with the theoretical model. This paper provides deeper insights into the effect of diffusion on filamentation of finite beams, crucial for comprehending plasma-based accelerators in laboratory and cosmic settings.
{"title":"Wakefield-driven filamentation of warm beams in plasma","authors":"Erwin Walter, John P. Farmer, Martin S. Weidl, Alexander Pukhov, Frank Jenko","doi":"10.1103/physreve.110.035208","DOIUrl":"https://doi.org/10.1103/physreve.110.035208","url":null,"abstract":"Charged and quasineutral beams propagating through an unmagnetized plasma are subject to numerous collisionless instabilities on the small scale of the plasma skin depth. The electrostatic two-stream instability, driven by longitudinal and transverse wakefields, dominates for dilute beams. This leads to modulation of the beam along the propagation direction and, for wide beams, transverse filamentation. A three-dimensional spatiotemporal two-stream theory for warm beams with a finite extent is developed. Unlike the cold beam limit, diffusion due to a finite emittance gives rise to a dominant wave number and a cutoff wave number above which filamentation is suppressed. Particle-in-cell simulations with quasineutral electron-positron beams in the relativistic regime give excellent agreement with the theoretical model. This paper provides deeper insights into the effect of diffusion on filamentation of finite beams, crucial for comprehending plasma-based accelerators in laboratory and cosmic settings.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"39 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1103/physreve.110.034209
O. G. Abamba, O. T. Kolebaje, U. E. Vincent, P. V. E. McClintock
For bichromatically excited diatomic molecules modeled in a shifted Tietz-Wei molecular potential, we demonstrate the occurrence of vibrational resonance (VR) when a saddle-node (SN) bifurcation takes place and its nonoccurrence in the absence of an SN bifurcation. We have examined the VR phenomenon and its connection with SN bifurcation for eight diatomic molecules, namely, , HF, CO, and NO, consisting of homogeneous, heterogenous, and halogen molecules. We demonstrate that each of them vibrates at a distinct resonant frequency but with a spread in frequency. The high-frequency amplitude at which VR occurs corresponds to the SN-bifurcation point. We validate our analytic results by numerical simulations and show that the homonuclear halogens respond only weakly to bichromatic fields, which may perhaps be linked to their absence of SN bifurcation.
对于在移位铁茨-魏分子势中建模的双色激发双原子分子,我们证明了在发生鞍节点(SN)分岔时会出现振动共振(VR),而在没有发生 SN 分岔时则不会出现振动共振。我们研究了八种二原子分子(即 H2、N2、Cl2、I2、O2、HF、CO 和 NO,包括同质分子、异质分子和卤素分子)的振动共振现象及其与 SN 分叉的联系。我们证明,它们各自以不同的共振频率振动,但频率不一。发生 VR 的高频振幅与 SN 分叉点相对应。我们通过数值模拟验证了我们的分析结果,并表明同核卤素对双色场的反应很微弱,这或许与它们不存在 SN 分叉有关。
{"title":"Vibrational resonance in bichromatically excited diatomic molecules in a shifted molecular potential","authors":"O. G. Abamba, O. T. Kolebaje, U. E. Vincent, P. V. E. McClintock","doi":"10.1103/physreve.110.034209","DOIUrl":"https://doi.org/10.1103/physreve.110.034209","url":null,"abstract":"For bichromatically excited diatomic molecules modeled in a shifted Tietz-Wei molecular potential, we demonstrate the occurrence of vibrational resonance (VR) when a saddle-node (SN) bifurcation takes place and its nonoccurrence in the absence of an SN bifurcation. We have examined the VR phenomenon and its connection with SN bifurcation for eight diatomic molecules, namely, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi mathvariant=\"normal\">N</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>Cl</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi mathvariant=\"normal\">I</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi mathvariant=\"normal\">O</mi><mn>2</mn></msub></math>, HF, CO, and NO, consisting of homogeneous, heterogenous, and halogen molecules. We demonstrate that each of them vibrates at a distinct resonant frequency but with a spread in frequency. The high-frequency amplitude at which VR occurs corresponds to the SN-bifurcation point. We validate our analytic results by numerical simulations and show that the homonuclear halogens respond only weakly to bichromatic fields, which may perhaps be linked to their absence of SN bifurcation.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"6 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1103/physreve.110.034606
Subhasish Chaki, Baicheng Mei, Kenneth S. Schweizer
The structure, thermodynamics, and slow activated dynamics of the equilibrated metastable regime of glass-forming fluids remain a poorly understood problem of high theoretical and experimental interest. We apply a highly accurate microscopic equilibrium liquid state integral equation theory, in conjunction with naïve mode coupling theory of particle localization, to study in a unified manner the structural correlations, thermodynamic properties, and dynamic elastic shear modulus in deeply metastable hard sphere fluids. Distinctive behaviors are predicted including divergent inverse critical power laws for the contact value of the pair correlation function, pressure, and inverse dimensionless compressibility, and a splitting of the second peak and large suppression of interstitial configurations of the pair correlation function. The dynamic elastic modulus is predicted to exhibit two distinct exponential growth regimes with packing fraction that have strongly different slopes. These thermodynamic, structural, and elastic modulus results are consistent with simulations and experiments. Perhaps most unexpectedly, connections between the amplitude of long wavelength density fluctuations, dimensionless compressibility, local structure, and the dynamic elastic shear modulus have been theoretically elucidated. These connections are more broadly relevant to understanding the slow activated relaxation and mechanical response of colloidal suspensions in the ultradense metastable region and deeply supercooled thermal liquids in equilibrium.
{"title":"Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids","authors":"Subhasish Chaki, Baicheng Mei, Kenneth S. Schweizer","doi":"10.1103/physreve.110.034606","DOIUrl":"https://doi.org/10.1103/physreve.110.034606","url":null,"abstract":"The structure, thermodynamics, and slow activated dynamics of the equilibrated metastable regime of glass-forming fluids remain a poorly understood problem of high theoretical and experimental interest. We apply a highly accurate microscopic equilibrium liquid state integral equation theory, in conjunction with naïve mode coupling theory of particle localization, to study in a unified manner the structural correlations, thermodynamic properties, and dynamic elastic shear modulus in deeply metastable hard sphere fluids. Distinctive behaviors are predicted including divergent inverse critical power laws for the contact value of the pair correlation function, pressure, and inverse dimensionless compressibility, and a splitting of the second peak and large suppression of interstitial configurations of the pair correlation function. The dynamic elastic modulus is predicted to exhibit two distinct exponential growth regimes with packing fraction that have strongly different slopes. These thermodynamic, structural, and elastic modulus results are consistent with simulations and experiments. Perhaps most unexpectedly, connections between the amplitude of long wavelength density fluctuations, dimensionless compressibility, local structure, and the dynamic elastic shear modulus have been theoretically elucidated. These connections are more broadly relevant to understanding the slow activated relaxation and mechanical response of colloidal suspensions in the ultradense metastable region and deeply supercooled thermal liquids in equilibrium.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"4 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1103/physreve.110.039901
M. Quintana, A. Berger
DOI:https://doi.org/10.1103/PhysRevE.110.039901
DOI:https://doi.org/10.1103/PhysRevE.110.039901
{"title":"Erratum: General existence and determination of conjugate fields in dynamically ordered magnetic systems [Phys. Rev. E 104, 044125 (2021)]","authors":"M. Quintana, A. Berger","doi":"10.1103/physreve.110.039901","DOIUrl":"https://doi.org/10.1103/physreve.110.039901","url":null,"abstract":"<span>DOI:</span><span>https://doi.org/10.1103/PhysRevE.110.039901</span>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"29 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We study the emergent dynamics of quantum self-sustained oscillators induced by the simultaneous presence of attraction and repulsion in the coupling path. We consider quantum Stuart-Landau oscillators under attractive-repulsive coupling and construct the corresponding quantum master equation in the Lindblad form. We discover an interesting symmetry-breaking transition from quantum limit cycle oscillation to a quantum inhomogeneous steady state. This transition is contrary to the previously known symmetry-breaking transition from a quantum homogeneous state to an inhomogeneous steady state. The result is supported by the analysis on the noisy classical model of the quantum system in the weak quantum regime. Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analog in the classical domain. This study enriches our understanding of the collective behaviors shown by coupled oscillators in the quantum domain.
{"title":"Attractive-repulsive interaction in coupled quantum oscillators","authors":"Bulti Paul, Biswabibek Bandyopadhyay, Tanmoy Banerjee","doi":"10.1103/physreve.110.034210","DOIUrl":"https://doi.org/10.1103/physreve.110.034210","url":null,"abstract":"We study the emergent dynamics of quantum self-sustained oscillators induced by the simultaneous presence of attraction and repulsion in the coupling path. We consider quantum Stuart-Landau oscillators under attractive-repulsive coupling and construct the corresponding quantum master equation in the Lindblad form. We discover an interesting symmetry-breaking transition from quantum limit cycle oscillation to a quantum inhomogeneous steady state. This transition is contrary to the previously known symmetry-breaking transition from a quantum homogeneous state to an inhomogeneous steady state. The result is supported by the analysis on the noisy classical model of the quantum system in the weak quantum regime. Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analog in the classical domain. This study enriches our understanding of the collective behaviors shown by coupled oscillators in the quantum domain.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"27 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1103/physreve.110.034406
Viviane M. Oliveira, Paulo R. A. Campos
In this paper, we present an in-depth investigation into the dynamics of evolutionary rescue using a resource-based modelling approach. Utilizing classical consumer-resource models, we aim to understand how species can adapt to abrupt environmental changes that alter the availability of substitutable resources. Through both analytical solutions and simulation-based techniques, we explore the conditions under which populations can recover from critical sizes and avoid extinction. Our findings highlight the importance of minimum viable population sizes, mutation rates, and the adaptive capacity of metabolic strategies in influencing population resilience. We demonstrate that while increased mutation rates can facilitate faster recovery by enabling populations to evolve new metabolic strategies suited to the altered resource landscape, populations starting with smaller sizes or facing severe reductions in resource availability are more susceptible to extinction. This study offers valuable insights into the interplay between ecological dynamics and evolutionary mechanisms, providing a comprehensive framework for predicting population persistence and informing conservation strategies under changing environmental conditions.
{"title":"Resource-based modelling approach to studying evolutionary rescue","authors":"Viviane M. Oliveira, Paulo R. A. Campos","doi":"10.1103/physreve.110.034406","DOIUrl":"https://doi.org/10.1103/physreve.110.034406","url":null,"abstract":"In this paper, we present an in-depth investigation into the dynamics of evolutionary rescue using a resource-based modelling approach. Utilizing classical consumer-resource models, we aim to understand how species can adapt to abrupt environmental changes that alter the availability of substitutable resources. Through both analytical solutions and simulation-based techniques, we explore the conditions under which populations can recover from critical sizes and avoid extinction. Our findings highlight the importance of minimum viable population sizes, mutation rates, and the adaptive capacity of metabolic strategies in influencing population resilience. We demonstrate that while increased mutation rates can facilitate faster recovery by enabling populations to evolve new metabolic strategies suited to the altered resource landscape, populations starting with smaller sizes or facing severe reductions in resource availability are more susceptible to extinction. This study offers valuable insights into the interplay between ecological dynamics and evolutionary mechanisms, providing a comprehensive framework for predicting population persistence and informing conservation strategies under changing environmental conditions.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"42 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1103/physreve.110.035207
F. X. Bronold, F. Willert
Employing the invariant embedding principle for the electron backscattering function, we present a scheme for constructing an electron surface scattering kernel to be used in the boundary condition for the electron Boltzmann equation of a plasma facing a semiconducting solid. The scheme takes the solid's microphysics responsible for electron emission and backscattering from the interface within a randium-jellium model into account and is applicable to dielectrics and metals as well. As an illustration, we consider silicon and germanium, describing the interface potential by a Schottky barrier and including impact ionization across the energy gap as well as scattering on phonons and ion cores. The emission yields deduced from the kernel agree well enough with measured data to support its use in the electron boundary condition of a plasma facing silicon or germanium.
{"title":"Electron surface scattering kernel for a plasma facing a semiconductor","authors":"F. X. Bronold, F. Willert","doi":"10.1103/physreve.110.035207","DOIUrl":"https://doi.org/10.1103/physreve.110.035207","url":null,"abstract":"Employing the invariant embedding principle for the electron backscattering function, we present a scheme for constructing an electron surface scattering kernel to be used in the boundary condition for the electron Boltzmann equation of a plasma facing a semiconducting solid. The scheme takes the solid's microphysics responsible for electron emission and backscattering from the interface within a randium-jellium model into account and is applicable to dielectrics and metals as well. As an illustration, we consider silicon and germanium, describing the interface potential by a Schottky barrier and including impact ionization across the energy gap as well as scattering on phonons and ion cores. The emission yields deduced from the kernel agree well enough with measured data to support its use in the electron boundary condition of a plasma facing silicon or germanium.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"3 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1103/physreve.110.034311
Xuan Wang, Haihong Li, Qionglin Dai, Junzhong Yang
We study a three-oscillator system with pairwise (1-simplex) and triadic (2-simplex) interactions, and focus on how the interplay between these two types of interactions influences synchronous dynamics. Using a minimal model, dynamical phenomena in systems that have been previously studied under the thermodynamic limit () are further clarified. Various synchronous states, including in-phase and antiphase synchronous states, as well as partial synchronous states are demonstrated. Meanwhile, significant multistable behaviors are revealed. Our work extends previous research on pairwise and triadic interactions, which can deepen our understanding of the impact of correlation between higher-order interaction and multistability. These dynamic phenomena bear resemblance to the diverse synchronization patterns of the heart, and they also serve as pivotal factors in information storage and memory retention within the brain.
{"title":"Coexistence of multistable synchronous states in a three-oscillator system with higher-order interaction","authors":"Xuan Wang, Haihong Li, Qionglin Dai, Junzhong Yang","doi":"10.1103/physreve.110.034311","DOIUrl":"https://doi.org/10.1103/physreve.110.034311","url":null,"abstract":"We study a three-oscillator system with pairwise (1-simplex) and triadic (2-simplex) interactions, and focus on how the interplay between these two types of interactions influences synchronous dynamics. Using a minimal model, dynamical phenomena in systems that have been previously studied under the thermodynamic limit (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math>) are further clarified. Various synchronous states, including in-phase and antiphase synchronous states, as well as partial synchronous states are demonstrated. Meanwhile, significant multistable behaviors are revealed. Our work extends previous research on pairwise and triadic interactions, which can deepen our understanding of the impact of correlation between higher-order interaction and multistability. These dynamic phenomena bear resemblance to the diverse synchronization patterns of the heart, and they also serve as pivotal factors in information storage and memory retention within the brain.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"3 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}