首页 > 最新文献

Physical review. E最新文献

英文 中文
Contrasting thermodynamic and hydrodynamic entropy.
IF 2.4 3区 物理与天体物理 Q1 Mathematics Pub Date : 2024-11-01 DOI: 10.1103/PhysRevE.110.055106
Mahendra K Verma, Rodion Stepanov, Alexandre Delache

In this paper, using hydrodynamic entropy, we quantify multiscale disorder in Euler and hydrodynamic turbulence. These examples illustrate that the hydrodynamic entropy is not extensive because it is not proportional to the system size. Consequently, we cannot add hydrodynamic and thermodynamic entropies, which measure disorder at macroscopic and microscopic scales, respectively. In this paper, we also discuss the hydrodynamic entropy for the time-dependent Ginzburg-Landau equation and Ising spins.

本文利用流体动力熵对欧拉湍流和流体动力湍流中的多尺度无序进行量化。这些例子说明,流体动力熵并不广泛,因为它与系统大小不成正比。因此,我们不能将分别测量宏观和微观尺度无序的流体动力熵和热力学熵相加。本文还讨论了与时间相关的金兹堡-朗道方程和伊辛自旋的流体动力熵。
{"title":"Contrasting thermodynamic and hydrodynamic entropy.","authors":"Mahendra K Verma, Rodion Stepanov, Alexandre Delache","doi":"10.1103/PhysRevE.110.055106","DOIUrl":"https://doi.org/10.1103/PhysRevE.110.055106","url":null,"abstract":"<p><p>In this paper, using hydrodynamic entropy, we quantify multiscale disorder in Euler and hydrodynamic turbulence. These examples illustrate that the hydrodynamic entropy is not extensive because it is not proportional to the system size. Consequently, we cannot add hydrodynamic and thermodynamic entropies, which measure disorder at macroscopic and microscopic scales, respectively. In this paper, we also discuss the hydrodynamic entropy for the time-dependent Ginzburg-Landau equation and Ising spins.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-2","pages":"055106"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Availability, storage capacity, and diffusion: Stationary states of an asymmetric exclusion process connected to two reservoirs.
IF 2.4 3区 物理与天体物理 Q1 Mathematics Pub Date : 2024-11-01 DOI: 10.1103/PhysRevE.110.054104
Sourav Pal, Parna Roy, Abhik Basu

We explore how the interplay of finite availability, carrying capacity of particles at different parts of a spatially extended system, and particle diffusion between them control the steady-state currents and density profiles in a one-dimensional current-carrying channel connecting the different parts of the system. To study this, we construct a minimal model consisting of two particle reservoirs of finite carrying capacities connected by a totally asymmetric simple exclusion process (TASEP). In addition to particle transport via TASEP between the reservoirs, the latter can also directly exchange particles via Langmuir kinetics-like processes, modeling particle diffusion between them that can maintain a steady current in the system. We calculate the steady-state density profiles and the associated particle currents in the TASEP lane. The resulting phases and the phase diagrams are quite different from an open TASEP, and are characterized by the model parameters defining particle exchanges between the TASEP and the reservoirs, direct particle exchanges between the reservoirs, and the filling fraction of the particles that determines the total resources available. These parameters can be tuned to make the density on the TASEP lane globally uniform or piecewise continuous, and can make the two reservoirs preferentially populated or depopulated.

我们探讨了有限可用性、空间扩展系统不同部分的粒子携带能力以及粒子之间的扩散如何控制连接系统不同部分的一维载流通道中的稳态电流和密度曲线。为了研究这一点,我们构建了一个最小模型,该模型由两个具有有限承载能力的粒子库组成,并通过完全不对称简单排阻过程(TASEP)连接起来。除了通过 TASEP 在两个储层之间进行粒子传输外,后者还可以通过类似朗缪尔动力学的过程直接交换粒子,模拟粒子在两个储层之间的扩散,从而维持系统中的稳定电流。我们计算了 TASEP 通道中的稳态密度曲线和相关粒子流。由此得出的相位和相图与开放式 TASEP 截然不同,其特征在于模型参数定义了 TASEP 与储层之间的粒子交换、储层之间的直接粒子交换以及决定总可用资源的粒子填充分数。可以对这些参数进行调整,使 TASEP 车道上的密度全局均匀或片断连续,并使两个储层优先填充或减少填充。
{"title":"Availability, storage capacity, and diffusion: Stationary states of an asymmetric exclusion process connected to two reservoirs.","authors":"Sourav Pal, Parna Roy, Abhik Basu","doi":"10.1103/PhysRevE.110.054104","DOIUrl":"https://doi.org/10.1103/PhysRevE.110.054104","url":null,"abstract":"<p><p>We explore how the interplay of finite availability, carrying capacity of particles at different parts of a spatially extended system, and particle diffusion between them control the steady-state currents and density profiles in a one-dimensional current-carrying channel connecting the different parts of the system. To study this, we construct a minimal model consisting of two particle reservoirs of finite carrying capacities connected by a totally asymmetric simple exclusion process (TASEP). In addition to particle transport via TASEP between the reservoirs, the latter can also directly exchange particles via Langmuir kinetics-like processes, modeling particle diffusion between them that can maintain a steady current in the system. We calculate the steady-state density profiles and the associated particle currents in the TASEP lane. The resulting phases and the phase diagrams are quite different from an open TASEP, and are characterized by the model parameters defining particle exchanges between the TASEP and the reservoirs, direct particle exchanges between the reservoirs, and the filling fraction of the particles that determines the total resources available. These parameters can be tuned to make the density on the TASEP lane globally uniform or piecewise continuous, and can make the two reservoirs preferentially populated or depopulated.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054104"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Buckling by disordered growth.
IF 2.4 3区 物理与天体物理 Q1 Mathematics Pub Date : 2024-11-01 DOI: 10.1103/PhysRevE.110.054405
Rahul G Ramachandran, Ricard Alert, Pierre A Haas

Buckling instabilities driven by tissue growth underpin key developmental events such as the folding of the brain. Tissue growth is disordered due to cell-to-cell variability, but the effects of this variability on buckling are unknown. Here, we analyze what is perhaps the simplest setup of this problem: the buckling of an elastic rod with fixed ends driven by spatially varying, yet highly symmetric growth. Combining analytical calculations for simple growth fields and numerical sampling of random growth fields, we show that variability can increase as well as decrease the growth threshold for buckling, even when growth variability does not cause any residual stresses. For random growth, we find numerically that the shift of the buckling threshold correlates with spatial moments of the growth field. Our results imply that biological systems can either trigger or avoid buckling by exploiting the spatial arrangement of growth variability.

由组织生长驱动的屈曲不稳定性是大脑折叠等关键发育事件的基础。由于细胞间的可变性,组织生长是无序的,但这种可变性对屈曲的影响尚不清楚。在此,我们分析了这一问题的最简单设置:一根两端固定的弹性杆在空间变化但高度对称的生长驱动下发生屈曲。结合对简单生长场的分析计算和对随机生长场的数值取样,我们表明,即使生长变化不会导致任何残余应力,变化也会增加或降低屈曲的生长阈值。对于随机生长,我们在数值上发现,屈曲阈值的移动与生长场的空间矩相关。我们的结果表明,生物系统可以通过利用生长变异的空间排列来触发或避免屈曲。
{"title":"Buckling by disordered growth.","authors":"Rahul G Ramachandran, Ricard Alert, Pierre A Haas","doi":"10.1103/PhysRevE.110.054405","DOIUrl":"https://doi.org/10.1103/PhysRevE.110.054405","url":null,"abstract":"<p><p>Buckling instabilities driven by tissue growth underpin key developmental events such as the folding of the brain. Tissue growth is disordered due to cell-to-cell variability, but the effects of this variability on buckling are unknown. Here, we analyze what is perhaps the simplest setup of this problem: the buckling of an elastic rod with fixed ends driven by spatially varying, yet highly symmetric growth. Combining analytical calculations for simple growth fields and numerical sampling of random growth fields, we show that variability can increase as well as decrease the growth threshold for buckling, even when growth variability does not cause any residual stresses. For random growth, we find numerically that the shift of the buckling threshold correlates with spatial moments of the growth field. Our results imply that biological systems can either trigger or avoid buckling by exploiting the spatial arrangement of growth variability.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054405"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical topological defects in an active nematic.
IF 2.4 3区 物理与天体物理 Q1 Mathematics Pub Date : 2024-11-01 DOI: 10.1103/PhysRevE.110.054605
Michael M Norton, Piyush Grover

We propose a reaction-diffusion system that converts topological information of an active nematic into chemical signals. We show that a curvature-activated reaction dipole is sufficient for creating a system that dynamically senses topology by producing a concentration field possessing local extrema coinciding with ±1/2 defects. The enabling term is analogous to polarization charge density seen in dielectric materials. We demonstrate the ability of this system to identify defects in both passive and active nematics. Our results illustrate that a relatively simple feedback scheme, expressed as a system of partial differential equations, is capable of producing chemical signals in response to inherently nonlocal structures in anisotropic media. We posit that such coarse-grained systems can help generate testable hypotheses for regulated processes in biological systems, such as morphogenesis, and motivate the creation of bio-inspired materials that utilize dynamic coupling between nematic structure and biochemistry.

我们提出了一种反应扩散系统,可将活性向列的拓扑信息转化为化学信号。我们的研究表明,曲率激活的反应偶极子足以创建一个系统,通过产生具有与 ±1/2 缺陷重合的局部极值的浓度场来动态感知拓扑结构。该使能项类似于电介质材料中的极化电荷密度。我们展示了该系统识别被动和主动线粒体缺陷的能力。我们的结果表明,用偏微分方程系统表示的相对简单的反馈方案能够产生化学信号,以响应各向异性介质中固有的非局部结构。我们认为,这种粗粒度系统有助于为形态发生等生物系统中的调节过程提出可检验的假设,并激励人们利用向列结构与生物化学之间的动态耦合创造生物启发材料。
{"title":"Mechanochemical topological defects in an active nematic.","authors":"Michael M Norton, Piyush Grover","doi":"10.1103/PhysRevE.110.054605","DOIUrl":"https://doi.org/10.1103/PhysRevE.110.054605","url":null,"abstract":"<p><p>We propose a reaction-diffusion system that converts topological information of an active nematic into chemical signals. We show that a curvature-activated reaction dipole is sufficient for creating a system that dynamically senses topology by producing a concentration field possessing local extrema coinciding with ±1/2 defects. The enabling term is analogous to polarization charge density seen in dielectric materials. We demonstrate the ability of this system to identify defects in both passive and active nematics. Our results illustrate that a relatively simple feedback scheme, expressed as a system of partial differential equations, is capable of producing chemical signals in response to inherently nonlocal structures in anisotropic media. We posit that such coarse-grained systems can help generate testable hypotheses for regulated processes in biological systems, such as morphogenesis, and motivate the creation of bio-inspired materials that utilize dynamic coupling between nematic structure and biochemistry.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054605"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanosensitive dose response of the bacterial flagellar motor.
IF 2.4 3区 物理与天体物理 Q1 Mathematics Pub Date : 2024-11-01 DOI: 10.1103/PhysRevE.110.054402
Shaoying Zhu, Rui He, Rongjing Zhang, Junhua Yuan

The bacterial flagellar motor is both chemo- and mechanosensitive. It is sensitive to the intracellular concentration of the chemotaxis response regulator CheY-P and to external load conditions. The motor's dose-response curve, which represents the probability of the motor rotating clockwise (CW bias) as a function of CheY-P concentration, characterizes its chemical sensitivity. However, it remains unclear how this dose-response curve depends on the load conditions. Here, we measured the dose-response curves of the motor under various load conditions. Surprisingly, we found that the dose-response curve exhibited minimal changes with load at low CW biases, but shifted leftward with higher sensitivity to CheY-P concentration at high CW biases when the load increased. This observation contradicts previous model predictions that incorporated the effect of stator-rotor interaction on motor switching. Through the development of an Ising-type model for the coupled chemo- and mechanosensitivity of the flagellar switch, we revealed that the mechanism underlying the mechanosensitive dose response is the synergistic interplay between the adaptive remodeling of the motor switch complex and the nonequilibrium effect of the stator-rotor interaction.

细菌鞭毛运动具有趋化和机械敏感性。它对细胞内趋化反应调节剂 CheY-P 的浓度和外部负载条件都很敏感。马达的剂量反应曲线表示马达顺时针旋转的概率(CW 偏移)与 CheY-P 浓度的函数关系,是其化学敏感性的特征。然而,剂量反应曲线如何取决于负载条件仍不清楚。在这里,我们测量了马达在各种负载条件下的剂量反应曲线。令人惊讶的是,我们发现在低 CW 偏置条件下,剂量反应曲线随负荷的变化极小,但在高 CW 偏置条件下,当负荷增加时,剂量反应曲线向左移动,对 CheY-P 浓度的敏感性更高。这一观察结果与之前的模型预测相矛盾,之前的模型预测包含了定转子相互作用对电机开关的影响。通过对鞭毛开关的化学和机械耦合敏感性建立一个 Ising 型模型,我们揭示了机械敏感性剂量反应的基本机制是马达开关复合体的适应性重塑与定子-转子相互作用的非平衡效应之间的协同作用。
{"title":"Mechanosensitive dose response of the bacterial flagellar motor.","authors":"Shaoying Zhu, Rui He, Rongjing Zhang, Junhua Yuan","doi":"10.1103/PhysRevE.110.054402","DOIUrl":"https://doi.org/10.1103/PhysRevE.110.054402","url":null,"abstract":"<p><p>The bacterial flagellar motor is both chemo- and mechanosensitive. It is sensitive to the intracellular concentration of the chemotaxis response regulator CheY-P and to external load conditions. The motor's dose-response curve, which represents the probability of the motor rotating clockwise (CW bias) as a function of CheY-P concentration, characterizes its chemical sensitivity. However, it remains unclear how this dose-response curve depends on the load conditions. Here, we measured the dose-response curves of the motor under various load conditions. Surprisingly, we found that the dose-response curve exhibited minimal changes with load at low CW biases, but shifted leftward with higher sensitivity to CheY-P concentration at high CW biases when the load increased. This observation contradicts previous model predictions that incorporated the effect of stator-rotor interaction on motor switching. Through the development of an Ising-type model for the coupled chemo- and mechanosensitivity of the flagellar switch, we revealed that the mechanism underlying the mechanosensitive dose response is the synergistic interplay between the adaptive remodeling of the motor switch complex and the nonequilibrium effect of the stator-rotor interaction.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054402"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complexity-stability relationships in competitive disordered dynamical systems. 竞争性无序动态系统中的完备性-稳定性关系。
IF 2.4 3区 物理与天体物理 Q1 Mathematics Pub Date : 2024-11-01 DOI: 10.1103/PhysRevE.110.054403
Onofrio Mazzarisi, Matteo Smerlak

Robert May famously used random matrix theory to predict that large, complex systems cannot admit stable fixed points. However, this general conclusion is not always supported by empirical observation: from cells to biomes, biological systems are large, complex, and often stable. In this paper, we revisit May's argument in light of recent developments in both ecology and random matrix theory. We focus on competitive systems, and, using a nonlinear generalization of the competitive Lotka-Volterra model, we show that there are, in fact, two kinds of complexity-stability relationships in disordered dynamical systems: if self-interactions grow faster with density than cross-interactions, complexity is destabilizing; but if cross-interactions grow faster than self-interactions, complexity is stabilizing.

罗伯特-梅(Robert May)曾利用随机矩阵理论预测,大型复杂系统不可能存在稳定的固定点。然而,这一一般性结论并不总是得到经验观察的支持:从细胞到生物群落,生物系统都是庞大、复杂的,而且往往是稳定的。在本文中,我们将根据生态学和随机矩阵理论的最新发展,重新审视梅的论点。我们将重点放在竞争性系统上,并利用竞争性洛特卡-沃尔特拉模型的非线性概括,证明在无序动态系统中实际上存在两种复杂性-稳定性关系:如果自相互作用随密度增长的速度快于交叉相互作用,复杂性就会破坏稳定;但如果交叉相互作用的增长速度快于自相互作用,复杂性就会稳定。
{"title":"Complexity-stability relationships in competitive disordered dynamical systems.","authors":"Onofrio Mazzarisi, Matteo Smerlak","doi":"10.1103/PhysRevE.110.054403","DOIUrl":"https://doi.org/10.1103/PhysRevE.110.054403","url":null,"abstract":"<p><p>Robert May famously used random matrix theory to predict that large, complex systems cannot admit stable fixed points. However, this general conclusion is not always supported by empirical observation: from cells to biomes, biological systems are large, complex, and often stable. In this paper, we revisit May's argument in light of recent developments in both ecology and random matrix theory. We focus on competitive systems, and, using a nonlinear generalization of the competitive Lotka-Volterra model, we show that there are, in fact, two kinds of complexity-stability relationships in disordered dynamical systems: if self-interactions grow faster with density than cross-interactions, complexity is destabilizing; but if cross-interactions grow faster than self-interactions, complexity is stabilizing.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054403"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localized spatiotemporal dynamics in active fluids. 活性流体中的局部时空动力学。
IF 2.4 3区 物理与天体物理 Q1 Mathematics Pub Date : 2024-11-01 DOI: 10.1103/PhysRevE.110.054409
Luca Barberi, Karsten Kruse

From cytoskeletal networks to tissues, many biological systems behave as active materials. Their composition and stress generation is affected by chemical reaction networks. In such systems, the coupling between mechanics and chemistry enables self-organization, for example, into waves. Recently, contractile mechanochemical systems have been shown to be able to spontaneously develop localized spatial patterns. Here, we show that these localized patterns can present intrinsic spatiotemporal dynamics, including oscillations and chaotic-like dynamics. We discuss their physical origin and bifurcation structure.

{"title":"Localized spatiotemporal dynamics in active fluids.","authors":"Luca Barberi, Karsten Kruse","doi":"10.1103/PhysRevE.110.054409","DOIUrl":"https://doi.org/10.1103/PhysRevE.110.054409","url":null,"abstract":"<p><p>From cytoskeletal networks to tissues, many biological systems behave as active materials. Their composition and stress generation is affected by chemical reaction networks. In such systems, the coupling between mechanics and chemistry enables self-organization, for example, into waves. Recently, contractile mechanochemical systems have been shown to be able to spontaneously develop localized spatial patterns. Here, we show that these localized patterns can present intrinsic spatiotemporal dynamics, including oscillations and chaotic-like dynamics. We discuss their physical origin and bifurcation structure.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054409"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamical phase transitions in the XY model: A Monte Carlo and mean-field-theory study.
IF 2.4 3区 物理与天体物理 Q1 Mathematics Pub Date : 2024-11-01 DOI: 10.1103/PhysRevE.110.054109
Mainak Pal, William D Baez, Pushan Majumdar, Arnab Sen, Trinanjan Datta

We investigate the dynamical phases and phase transitions arising in a classical two-dimensional anisotropic XY model under the influence of a periodically driven temporal external magnetic field in the form of a symmetric square wave. We use a combination of finite temperature classical Monte Carlo simulation, implemented within a CPU+GPU paradigm, utilizing local dynamics provided by the Glauber algorithm and a phenomenological equation-of-motion approach based on relaxational dynamics governed by the time-dependent free energy within a mean-field approximation to study the model. We investigate several parameter regimes of the variables (magnetic field, anisotropy, and the external drive frequency) that influence the anisotropic XY system. We identify four possible dynamical phases: Ising-SBO, Ising-SRO, XY-SBO, and XY-SRO. Both techniques indicate that only three of them (Ising-SRO, Ising-SBO, and XY-SRO) are stable dynamical phases in the thermodynamic sense. Within the Monte Carlo framework, a finite-size scaling analysis, shows that XY-SBO does not survive in the thermodynamic limit giving way to either an Ising-SBO or a XY-SRO regime. The finite-size scaling analysis further shows that the transitions between the three remaining dynamical phases either belong to the two-dimensional Ising universality class or are first-order in nature. Within the mean-field calculations yield three stable dynamical phases, i.e., Ising-SRO, Ising-SBO and XY-SRO, where the final steady state is independent of the initial condition chosen to evolve the equations of motion, as well as a region of bistability where the system flows to either Ising-SBO or XY-SRO (Ising-SRO) depending on the initial condition. Unlike the stable dynamical phases, the XY-SBO represents a transient feature that is eventually lost to either Ising-SBO or XY-SRO. Our mean-field analysis highlights the importance of the competition between switching of the stationary point(s) of the free energy after each half cycle of the external field and the two-dimensional nature of the phase space for the equations of motion.

{"title":"Dynamical phase transitions in the XY model: A Monte Carlo and mean-field-theory study.","authors":"Mainak Pal, William D Baez, Pushan Majumdar, Arnab Sen, Trinanjan Datta","doi":"10.1103/PhysRevE.110.054109","DOIUrl":"https://doi.org/10.1103/PhysRevE.110.054109","url":null,"abstract":"<p><p>We investigate the dynamical phases and phase transitions arising in a classical two-dimensional anisotropic XY model under the influence of a periodically driven temporal external magnetic field in the form of a symmetric square wave. We use a combination of finite temperature classical Monte Carlo simulation, implemented within a CPU+GPU paradigm, utilizing local dynamics provided by the Glauber algorithm and a phenomenological equation-of-motion approach based on relaxational dynamics governed by the time-dependent free energy within a mean-field approximation to study the model. We investigate several parameter regimes of the variables (magnetic field, anisotropy, and the external drive frequency) that influence the anisotropic XY system. We identify four possible dynamical phases: Ising-SBO, Ising-SRO, XY-SBO, and XY-SRO. Both techniques indicate that only three of them (Ising-SRO, Ising-SBO, and XY-SRO) are stable dynamical phases in the thermodynamic sense. Within the Monte Carlo framework, a finite-size scaling analysis, shows that XY-SBO does not survive in the thermodynamic limit giving way to either an Ising-SBO or a XY-SRO regime. The finite-size scaling analysis further shows that the transitions between the three remaining dynamical phases either belong to the two-dimensional Ising universality class or are first-order in nature. Within the mean-field calculations yield three stable dynamical phases, i.e., Ising-SRO, Ising-SBO and XY-SRO, where the final steady state is independent of the initial condition chosen to evolve the equations of motion, as well as a region of bistability where the system flows to either Ising-SBO or XY-SRO (Ising-SRO) depending on the initial condition. Unlike the stable dynamical phases, the XY-SBO represents a transient feature that is eventually lost to either Ising-SBO or XY-SRO. Our mean-field analysis highlights the importance of the competition between switching of the stationary point(s) of the free energy after each half cycle of the external field and the two-dimensional nature of the phase space for the equations of motion.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054109"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transition-path sampling for run-and-tumble particles.
IF 2.4 3区 物理与天体物理 Q1 Mathematics Pub Date : 2024-11-01 DOI: 10.1103/PhysRevE.110.054121
Thomas Kiechl, Thomas Franosch, Michele Caraglio

We elaborate and validate a generalization of the renowned transition-path-sampling algorithm for a paradigmatic model of active particles, namely, the run-and-tumble particles. Notwithstanding the nonequilibrium character of these particles, we show how the consequent lack of the microscopical reversibility property, which is usually required by transition-path sampling, can be circumvented by identifying reasonable backward dynamics with a well-defined path-probability density. Our method is then applied to characterize the structure and kinetics of rare transition pathways undergone by run-and-tumble particles having to cross a potential barrier in order to find a target.

{"title":"Transition-path sampling for run-and-tumble particles.","authors":"Thomas Kiechl, Thomas Franosch, Michele Caraglio","doi":"10.1103/PhysRevE.110.054121","DOIUrl":"https://doi.org/10.1103/PhysRevE.110.054121","url":null,"abstract":"<p><p>We elaborate and validate a generalization of the renowned transition-path-sampling algorithm for a paradigmatic model of active particles, namely, the run-and-tumble particles. Notwithstanding the nonequilibrium character of these particles, we show how the consequent lack of the microscopical reversibility property, which is usually required by transition-path sampling, can be circumvented by identifying reasonable backward dynamics with a well-defined path-probability density. Our method is then applied to characterize the structure and kinetics of rare transition pathways undergone by run-and-tumble particles having to cross a potential barrier in order to find a target.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054121"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient simulations of Hartree-Fock equations by an accelerated gradient descent method.
IF 2.4 3区 物理与天体物理 Q1 Mathematics Pub Date : 2024-11-01 DOI: 10.1103/PhysRevE.110.055304
Y Ohno, A Del Maestro, T I Lakoba

We develop convergence acceleration procedures that enable a gradient descent-type iteration method to efficiently simulate Hartree-Fock equations for many particles interacting both with each other and with an external potential. Our development focuses on three aspects: (i) optimization of a parameter in the preconditioning operator; (ii) adoption of a technique that eliminates the slowest-decaying mode to the case of many equations (describing many particles); and (iii) a novel extension of the above technique that allows one to eliminate multiple modes simultaneously. We illustrate performance of the numerical method for the two-dimensional model of the first layer of helium atoms above a graphene sheet. We demonstrate that incorporation of aspects (i) and (ii) above into the "plain" gradient descent method accelerates it by at least two orders of magnitude, and often by much more. Aspect (iii)-the multiple-mode elimination-may bring further improvement to the convergence rate compared to aspect (ii), the single-mode elimination. Both single- and multiple-mode elimination techniques are shown to significantly outperform the well-known Anderson Acceleration. We believe that our acceleration techniques can also be employed by other iterative methods, especially those handling hard-core-type interaction of many particles.

{"title":"Efficient simulations of Hartree-Fock equations by an accelerated gradient descent method.","authors":"Y Ohno, A Del Maestro, T I Lakoba","doi":"10.1103/PhysRevE.110.055304","DOIUrl":"https://doi.org/10.1103/PhysRevE.110.055304","url":null,"abstract":"<p><p>We develop convergence acceleration procedures that enable a gradient descent-type iteration method to efficiently simulate Hartree-Fock equations for many particles interacting both with each other and with an external potential. Our development focuses on three aspects: (i) optimization of a parameter in the preconditioning operator; (ii) adoption of a technique that eliminates the slowest-decaying mode to the case of many equations (describing many particles); and (iii) a novel extension of the above technique that allows one to eliminate multiple modes simultaneously. We illustrate performance of the numerical method for the two-dimensional model of the first layer of helium atoms above a graphene sheet. We demonstrate that incorporation of aspects (i) and (ii) above into the \"plain\" gradient descent method accelerates it by at least two orders of magnitude, and often by much more. Aspect (iii)-the multiple-mode elimination-may bring further improvement to the convergence rate compared to aspect (ii), the single-mode elimination. Both single- and multiple-mode elimination techniques are shown to significantly outperform the well-known Anderson Acceleration. We believe that our acceleration techniques can also be employed by other iterative methods, especially those handling hard-core-type interaction of many particles.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-2","pages":"055304"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical review. E
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1