Directionality of gravitational and thermal diffusive transport in geologic fluid storage

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-07-31 DOI:10.1103/physreve.110.015106
Anna L. Herring, Ruotong Huang (黄若橦), Adrian Sheppard
{"title":"Directionality of gravitational and thermal diffusive transport in geologic fluid storage","authors":"Anna L. Herring, Ruotong Huang (黄若橦), Adrian Sheppard","doi":"10.1103/physreve.110.015106","DOIUrl":null,"url":null,"abstract":"Diffusive transport has implications for the long-term status of underground storage of hydrogen <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>(</mo><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub><mo>)</mo></math> fuel and carbon dioxide <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>(</mo><msub><mi>CO</mi><mn>2</mn></msub><mo>)</mo></math>, technologies which are being pursued to mitigate climate change and advance the energy transition. Once injected underground, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CO</mi><mn>2</mn></msub></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></math> will exist in multiphase fluid-water-rock systems. The partially soluble injected fluids can flow through the porous rock in a connected plume, become disconnected and trapped as ganglia surrounded by groundwater within the storage rock pore space, and also dissolve and migrate through the aqueous phase once dissolved. Recent analyses have focused on the concentration gradients induced by differing capillary pressure between fluid ganglia which can drive diffusive transport (“Ostwald ripening”). However, studies have neglected or excessively simplified important factors, namely the nonideality of gases under geologic conditions, the opposing equilibrium state of dissolved <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CO</mi><mn>2</mn></msub></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></math> driven by the partial molar density of dissolved solutes, and entropic and thermodiffusive effects resulting from geothermal gradients. We conduct an analysis from thermodynamic first principles and use this to provide numerical estimates for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CO</mi><mn>2</mn></msub></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></math> at conditions relevant to underground storage reservoirs. We show that while diffusive transport in isothermal systems is upwards for both gases, as indicated by previous analysis, entropic contributions to the free energy are so significant as to cause a reversal in the direction of diffusive transport in systems with geothermal gradients. For <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CO</mi><mn>2</mn></msub></math>, even geothermal gradients less than <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>10</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi><mo>/</mo><mi>km</mi></mrow></math> (far less than typical gradients of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>25</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi><mo>/</mo><mi>km</mi></mrow></math>) are sufficient to induce downwards diffusion at depths relevant to storage. Diffusive transport of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></math> is less affected but still reverses direction under typical gradients, e.g., <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>30</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi><mo>/</mo><mi>km</mi></mrow></math>, at a depth of 1000 m. This reversal occurs independent of the solute's thermophobicity or thermophilicity in aqueous solutions. The entropic contribution also modifies the magnitude of flux where geothermal gradients are present, with the largest diffusive fluxes estimated for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CO</mi><mn>2</mn></msub></math> with a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>30</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi><mo>/</mo><mi>km</mi></mrow></math> gradient, despite the higher diffusion coefficient of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></math>. We find a maximum flux on the order of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup></math> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>mol</mi><mo>/</mo><mo>(</mo><msup><mrow><mi>cm</mi></mrow><mn>2</mn></msup><mi mathvariant=\"normal\">s</mi><mo>)</mo></mrow></math> for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CO</mi><mn>2</mn></msub></math> in the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>30</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi><mo>/</mo><mi>km</mi></mrow></math> scenario; significantly lower than literature estimates for maximum convective fluxes in moderate to high permeability formations. Contrary to previous studies, we find that in diffusion and convection will likely work in concert—both driving <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CO</mi><mn>2</mn></msub></math> downwards, and both driving <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></math> upwards—for conditions representative of their respective storage reservoirs.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.015106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusive transport has implications for the long-term status of underground storage of hydrogen (H2) fuel and carbon dioxide (CO2), technologies which are being pursued to mitigate climate change and advance the energy transition. Once injected underground, CO2 and H2 will exist in multiphase fluid-water-rock systems. The partially soluble injected fluids can flow through the porous rock in a connected plume, become disconnected and trapped as ganglia surrounded by groundwater within the storage rock pore space, and also dissolve and migrate through the aqueous phase once dissolved. Recent analyses have focused on the concentration gradients induced by differing capillary pressure between fluid ganglia which can drive diffusive transport (“Ostwald ripening”). However, studies have neglected or excessively simplified important factors, namely the nonideality of gases under geologic conditions, the opposing equilibrium state of dissolved CO2 and H2 driven by the partial molar density of dissolved solutes, and entropic and thermodiffusive effects resulting from geothermal gradients. We conduct an analysis from thermodynamic first principles and use this to provide numerical estimates for CO2 and H2 at conditions relevant to underground storage reservoirs. We show that while diffusive transport in isothermal systems is upwards for both gases, as indicated by previous analysis, entropic contributions to the free energy are so significant as to cause a reversal in the direction of diffusive transport in systems with geothermal gradients. For CO2, even geothermal gradients less than 10C/km (far less than typical gradients of 25C/km) are sufficient to induce downwards diffusion at depths relevant to storage. Diffusive transport of H2 is less affected but still reverses direction under typical gradients, e.g., 30C/km, at a depth of 1000 m. This reversal occurs independent of the solute's thermophobicity or thermophilicity in aqueous solutions. The entropic contribution also modifies the magnitude of flux where geothermal gradients are present, with the largest diffusive fluxes estimated for CO2 with a 30C/km gradient, despite the higher diffusion coefficient of H2. We find a maximum flux on the order of 1013 mol/(cm2s) for CO2 in the 30C/km scenario; significantly lower than literature estimates for maximum convective fluxes in moderate to high permeability formations. Contrary to previous studies, we find that in diffusion and convection will likely work in concert—both driving CO2 downwards, and both driving H2 upwards—for conditions representative of their respective storage reservoirs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地质流体储存中重力和热扩散传输的方向性
扩散输运对氢气(H2)燃料和二氧化碳(CO2)地下储存的长期状况具有影响,而这些技术正被用于减缓气候变化和推动能源转型。一旦注入地下,二氧化碳和氢气将存在于多相流体-水-岩石系统中。部分可溶的注入流体可以以连接的羽流形式流经多孔岩石,也可以断开连接并作为被地下水包围的神经节被困在储藏岩孔隙空间中,还可以溶解并在溶解后通过水相迁移。最近的分析主要集中在流体节间不同的毛细管压力所引起的浓度梯度,这种梯度可以推动扩散迁移("奥斯特瓦尔德熟化")。然而,这些研究忽视或过度简化了一些重要因素,即地质条件下气体的非理想性、由溶解溶质的部分摩尔密度驱动的溶解 CO2 和 H2 的对立平衡状态,以及地热梯度产生的熵效应和热扩散效应。我们根据热力学第一原理进行了分析,并以此为基础对地下储层相关条件下的 CO2 和 H2 进行了数值估算。我们的研究表明,正如之前的分析所表明的那样,虽然这两种气体在等温系统中的扩散输运都是向上的,但自由能的熵贡献是如此之大,以至于在有地热梯度的系统中会导致扩散输运方向的逆转。对于 CO2 来说,即使地热梯度小于 10∘C/km(远小于 25∘C/km 的典型梯度),也足以在与封存有关的深度引起向下扩散。H2 的扩散输运受到的影响较小,但在典型梯度下(例如在 1000 米深处为 30∘C/km)仍然会发生方向逆转。这种逆转的发生与溶质在水溶液中的疏热性或亲热性无关。在存在地热梯度的地方,熵贡献也会改变通量的大小,尽管 H2 的扩散系数较高,但估计 CO2 在 30∘C/km 梯度下的扩散通量最大。我们发现,在 30∘C/km 的情况下,二氧化碳的最大通量约为 10-13 摩尔/(平方厘米);明显低于文献中对中高渗透率地层中最大对流通量的估计。与之前的研究相反,我们发现扩散和对流可能会协同作用--在各自储层的代表性条件下,扩散和对流都会向下驱动 CO2,向上驱动 H2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Dispersion network-transition entropy: A metric for characterizing the complexity of nonlinear signals Fast decisions reflect biases; slow decisions do not Self-organization of anti-aligning active particles: Waving pattern formation and chaos Interaction between gas channels in water-saturated sands Testing for Markovian character of transfer of fluctuations in solar wind turbulence on kinetic scales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1